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Abstract

The notion of divergence information of an ensemble of probability distributions was in-
troduced by Jain, Radhakrishnan, and Sen [5, 7] in the context of the “substate theorem”.
Since then, divergence has been recognized as a more natural measure of information in several
situations in quantum and classical communication.

We construct ensembles of probability distributions for which divergence information may
be significantly smaller than the more standard Holevo information. As a result, we establish
that lower bounds previously shown for Holevo information are weaker than similar ones shown
for divergence information.
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1 Introduction

In this article, we study the relationship between two different measures of information contained
in an ensemble of probability distributions. The first measure, Holevo information, is a standard
notion from information theory, and is equivalent to the notion of mutual information between
two random variables. Consider jointly distributed random variables XY , with X taking values
in a sample space X . Consider the ensemble of distributions E = {(λi, Yi) : i ∈ X}, where λi =
Pr(X = i), and Yi = Y |(X = i), obtained by conditioning on values assumed by X. The Holevo
information of the ensemble is given by χ(E) = I(X : Y ) = Ei∼XS(Yi‖Y ), where S(·‖·) measures
the relative entropy of a random variable (equivalently, distribution) with respect to another. This
notion may be extended to ensembles of quantum states (see, e.g., the text [11]), and the term
‘Holevo information’ is derived from the literature in quantum information theory.

The second measure, divergence information, was introduced by Jain, Radhakrishnan, and Sen [5,
7]. It arises in the study of relative entropy, and its connection with a “substate property”. The
observational divergence (or simply divergence) of two classical distributions P,Q on the same finite
sample space is maxE P (E) log2(P (E)/Q(E)), where E ranges over all events. We may view this
as a (scaled) measure of the factor by which P may exceed Q for an event of interest. The notion
of divergence information is derived from this as D(E) = Ei∼XD(Yi‖Y ), in analogy with Holevo
information. A quantum generalisation of this measure may also be defined [7].

Relative entropy and Holevo (or mutual) information have been studied extensively in communica-
tion theory and beyond (see, e.g, [2]) as they arise in a variety of applications. Since the discovery
of the substate theorem [5], divergence is being recognized as a more natural measure of informa-
tion in a growing number of applications [7, Section 1]. The applications include privacy trade-offs
in communicatioin protocols for computing relations [6] and bit-string commitment [3], and the
communication complexity of remote state preparation [4]. In particular, divergence captures, up
to a constant factor, the substate property for probability distributions. It thus becomes relevant
in every application where the substate theorem is used.

We construct ensembles of probability distributions (equivalently, jointly distributed random vari-
ables) for which the Holevo and divergence information are quantitatively different.

Theorem 1.1 For every positive integer N , and real number k ≥ 1 such that N > 236k2

, there
is an ensemble E of distributions over a sample space of size N such that D(E) = k and χ(E) =
Θ(k log log N).

A more precise statement of this theorem (Theorem 3.1) and related results may be found in
Section 3.

The ensembles we construct satisfy the property that the ensemble average (i.e., the distribution of
the random variable Y in the description above) is uniform. We show that the above separation is
essentially the best possible whenever the ensemble average is uniform (Theorem 3.5). The result
also applies to ensembles of quantum states, where the ensemble average is the completely mixed
state (Theorem 3.6). We leave open the possibility of larger separations for classical or quantum
ensembles with non-uniform averages.

The difference between the two measures demonstrated by Theorem 1.1 shows that in certain
applications, divergence is quantitatively a more relevant measure of information. In Appendix A,
we describe two applications where functionally similar lower bounds have been established in terms
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of both measures. This article shows that the lower bounds in terms of divergence information are,
in fact, stronger.

In prior work on the subject, Jain et al. [7, Appendix A] compare relative entropy and divergence
for classical as well as quantum states. For pairs of distributions P,Q over a sample space of size N ,
they show that D(P‖Q) ≤ S(P‖Q) + 1, and S(P‖Q) ≤ D(P‖Q) · (N − 1). This extends to the
corresponding measures of information in an ensemble: D(E) ≤ χ(E) + 1 and χ(E) ≤ D(E) · (N −
1). They show qualitatively similar relations for ensembles of quantum states. In addition, they
construct a pair of distributions P,Q such that S(P‖Q) = Ω(D(P‖Q) · N). However, they do not
translate their construction to a similar separation for ensembles of probability distributions. Our
work fills this gap for ensembles (of classical or quantum states) with a uniform average.

2 Preliminaries

Here, we summarise our notation and the information-theoretic concepts we encounter in this
work. We refer the reader to the text by Cover and Thomas [2] for a deeper treatment of (classical)
information theory. While the bulk of this article pertains to classical information theory, as
mentioned in Section 1, it is motivated by studies in (and has implications for) quantum information.
We refer the reader to the text [11] for an introduction to quantum information.

For a positive integer N , let [N ] represent the set {1, . . . ,N}. We view probability distributions
over [N ] as vectors in R

N . The probability assigned by distribution P to a sample point i ∈ [N ] is
denoted by pi (i.e., with the same letter in small case). We denote by P ↓ the distribution obtained

from P by composing it with a permutation π on [N ] so that p↓i = pπ(i) and p↓1 ≥ p↓2 ≥ · · · ≥ p↓N .
For an event E ⊆ [N ], let P (E) =

∑

i∈E pi denote the probability of that event. We denote the
uniform distribution over [N ] by UN . The expected value of a function f : [N ] → R with respect
to the distribution P over [N ] is abbreviated as EP f .

We appeal to the majorisation relation for some of our arguments. The relation tells us which of
two given distributions is “more random”.

Definition 2.1 (Majorisation) Let P,Q be distributions over [N ]. We say that P majorises Q,
denoted as P � Q, if

i
∑

j=1

p↓j ≥
i

∑

j=1

q↓j ,

for all i ∈ [N ].

The following is straightforward.

Fact 2.1 Any probability distribution P on [N ] majorises UN , the uniform distribution over [N ].

Throughout this article, we use ‘log’ to denote the logarithm with base 2, and ‘ln’ to denote the
logarithm with base e.

Definition 2.2 (Entropy, relative entropy) Let P,Q be probability distributions on [N ]. The

entropy of P is defined as H(P )
def
= −∑N

i=1 pi log pi. The relative entropy between P,Q, denoted
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S(P‖Q), is defined as

S(P‖Q)
def
=

N
∑

i=1

pi log
pi

qi
.

Note that the relative entropy with respect to the uniform distribution is connected to entropy as
S(P‖UN ) = log N − H(P ).

We can formalise the connection between majorisation and randomness through the following fact.

Fact 2.2 If P,Q are distributions over [N ] such that P majorises Q, i.e. P � Q, then H(P ) ≤
H(Q).

The notion of observational divergence was defined by Jain, Radhakrishnan, and Sen [5] in the
context of the “substate theorem”.

Definition 2.3 (Observational divergence) Let P,Q be probability distributions on [N ]. Then
the observational divergence between them, denoted D(P‖Q), is defined as

D(P‖Q)
def
= max

f :[N ]→[0,1]
(EP f) log

EP f

EQf
.

Note that we allow the quantity to take the value +∞. Throughout the paper we refer to ‘obser-
vational divergence’ as simply ‘divergence’.

Divergence D(P‖Q) is always non-negative, and it is finite precisely when the support of P is
contained in the support of Q [5]. Due to convexity, the divergence between two distributions is
attained by the characteristic function of an event.

Lemma 2.3 D(P‖Q) = maxE⊆[N ] P (E) log P (E)
Q(E) .

Proof: Let F denote the (convex) set of functions from [N ] to [0, 1]. The extreme points of F are
precisely the characteristic functions of events in [N ]. For an extreme point, say the characteristic
function fE of the event E ⊆ [N ], we have EP fE = P (E).

If the divergence is +∞, then there is an event for which the right hand side also takes the value +∞.
So assume that the divergence is finite. In this case, the right hand side also is finite, as the support
of P is contained in the support of Q. By restricting f : [N ] → [0, 1] to characteristic functions of
events, we see that D(P‖Q) is at least the expression on the right hand side above.

For the inequality in the other direction, we note that the function

g(x) = (ax + b) log

(

ax + b

cx + d

)

defined on [0, 1] is convex in x, for any a, b, c, d ∈ R such that ax + b ≥ 0 and cx + d > 0
when x ∈ [0, 1]. Therefore, the function g(x) attains its maximum at either x = 0 or at x = 1.

The convexity of g(x) implies that for any α ∈ [0, 1], and functions f, f ′ ∈ F , we have

(EP (αf + (1 − α)f ′)) log
EP (αf + (1 − α)f ′)

EQ(αf + (1 − α)f ′)

= (α(EP f − EP f ′) + EP f ′) log
α(EP f − EP f ′) + EP f ′

α(EQf − EQf ′) + EQf ′

≤ max

{

(EP f) log
EP f

EQf
, (EP f ′) log

EP f ′

EQf ′

}

.
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Thus, the divergence is attained at an extreme point of F . This proves the claim.

Henceforth, we only use the equivalent definition of divergence given by this lemma.

The divergence of any distribution with respect to the uniform distribution is bounded.

Lemma 2.4 For any probability distribution P on [N ], we have 0 ≤ D(P‖UN ) ≤ log N .

Proof: Consider the event E which achieves the divergence between P and UN . W.l.o.g., the
event E is non-empty. Therefore P (E) ≥ UN (E) ≥ 1/N , and 0 ≤ D(P‖UN ) ≤ P (E) log P (E)N ≤
log N .

We observe that we need only maximise over N events to calculate divergence with respect to the
uniform distribution.

Lemma 2.5 For any probability distribution P on [N ] such that P ↓ = P , i.e., p1 ≥ p2 ≥ · · · ≥ pN ,
we have

D(P‖UN ) = max
i∈[N ]

P ([i]) log
N · P ([i])

i
.

Proof: By definition of observational divergence, the RHS above is bounded by D(P‖UN ). For
the inequality in the other direction, we note that the probability P (E) of any event E with
size nE = |E| is bounded by P ([nE ]), the probability of the first nE elements in [N ]. We thus have

D(P‖Q) = max
E⊆[N ]

P (E) log
N · P (E)

nE

≤ max
E⊆[N ]

P (E) log
N · P ([nE])

nE

≤ max
E⊆[N ]

P ([nE ]) log
N · P ([nE ])

nE
,

since P majorises UN (Fact 2.1) and P ([nE ]) ≥ nE

N . This is equivalent to the RHS in the statement
of the lemma.

Definition 2.4 (Ensemble) An ensemble is a sequence of pairs {(λj, Qj) : j ∈ [M ]}, for some
integer M , where Λ = (λj) ∈ R

M is a probability distribution on [M ] and Qj are probability
distributions over the same sample space.

Definition 2.5 (Holevo information) The Holevo information of an ensemble E = {(λj , Qj) :
j ∈ [M ]}, denoted as χ(E), is defined as

χ(E)
def
=

M
∑

j=1

λj S(Qj‖Q),

where Q =
∑M

j=1 λjQj is the ensemble average.

Definition 2.6 (Divergence information) The divergence information of an ensemble E = {(λj , Qj) :
j ∈ [M ]}, denoted as D(E) is defined as

D(E)
def
=

M
∑

j=1

λj D(Qj‖Q),

where Q =
∑M

j=1 λjQj is the ensemble average.
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3 Divergence versus relative entropy

In this section, we describe the construction of an ensemble for which there is a large separation
between divergence and Holevo information. The ensemble has the property that the ensemble
average is uniform. As a by-product of our construction, we also obtain a bound on the maximum
possible separation for ensembles with a uniform average.

We begin with the construction of the ensemble. Let fL(k,N) = k(ln log(kN)− ln(6k)+1)− log(1+
k ln 2) − 1 − 1

ln 2 on point in the positive orthant in R
2 with Nk > 1.

Theorem 3.1 For every integer N > 1, and every positive real number 16
N ≤ k < log N , there

is an ensemble E =
{

( 1
N , Qi) : i ∈ [N ]

}

with 1
N

∑

i Qi = UN , the uniform distribution over [N ],
with D(E) ≤ k, and

χ(E) ≥ fL(k,N).

To construct the ensemble described in the theorem above, we first construct a probability distribu-
tion P on [N ] with observational divergence D(P‖UN ) ≤ k such that its relative entropy S(P‖UN )
is large as compared with k. Let fU = k(ln log(Nk)− ln k + 1) be defined on points in the positive
orthant of R

2 with kN > 1.

Theorem 3.2 For every integer N > 1, and every positive real number 16
N ≤ k < log N , there is a

probability distribution P with D(P‖UN ) = k, and

fL(k,N) ≤ S(P‖UN ) ≤ fU(k,N).

The construction of the ensemble is now immediate.

Proof of Theorem 3.1: Let Qj = P ◦ πj, where πj is the cyclic permutation of [N ] by j − 1
places. We endow the set of the N cyclic permutations {Qj : j ∈ [N ]} of P with the uniform
distribution. By construction, the ensemble average is UN . Since both observational divergence
and relative entropy with respect to the uniform distribution are invariant under permutations of
the sample space, D(E) = D(P‖UN ) ≤ k, and χ(E) = S(P‖UN ) ≥ fL(k,N).

We turn to the construction of the distribution P . Our construction is such that P ↓ = P , i.e.,
p1 ≥ p2 ≥ · · · ≥ pN . Lemma 2.5 tells us that we need only ensure that

P ([i]) log
N · P ([i])

i
≤ k, ∀ i ∈ [N ], (1)

to ensure D(P‖Q) ≤ k. Since S(P‖UN ) = log N − H(P ), we wish to minimise the entropy of P
subject to the constraints in Eq. (1). This is equivalent to successively maximising p1, p2, . . ., and
motivates the following definitions.

Define the function g(y, x) = y log(Ny/x)−k on the positive orthant of R
2. Consider the function h :

R
+ → R

+ implicitly defined by the equation g(h(x), x) = 0.

Lemma 3.3 The function h : R
+ → R

+ is well-defined, strictly increasing, and concave.

Proof: Fix an x ∈ R
+, and consider the function gx(y) = g(y, x). This function is continuous

on R
+, tends to −k < 0 as y → 0+, and tends to ∞ as y → ∞. By Intermediate Value Theorem,

for some y > 0, we have gx(y) = 0. Moreover, gx(y) < −k for 0 < y ≤ x/N , and is strictly
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increasing for y > x/Ne (its derivative is g′x(y) = log eNy
x ). Therefore there is a unique y such

that gx(y) = 0 and h(x) is well-defined.

The function h satisfies the equation h log Nh
x = k, and therefore the identity

x = Nh exp
(

−k ln 2
h

)

.

Differentiating with respect to h, we see that

dx

dh
= N

(

1 +
k ln 2

h

)

exp
(

−k ln 2
h

)

, and

d2x

dh2
=

N(k ln 2)2

h3
exp

(

−k ln 2
h

)

.

So dh
dx > 0 for all x > 0, and h is a strictly increasing function. Note also that d2x

dh2 > 0 for all h > 0,
so x is a convex function of h. Since h is an increasing function, convexity of x(h) implies concavity
of h(x).

Let v0 = 0. For i ∈ [N ], let vi = h(i), i.e., vi log Nvi

i = k. Let si
def
= min{1, vi}, for i ∈ [N ].

Let p1 = s1, and pi = si − si−1 for all 2 ≤ i ≤ N . Lemma 3.3 guarantees that these numbers are
well-defined. We claim that

Lemma 3.4 The vector P = (pi) ∈ R
N defined above is a probability distribution, and P ↓ = P ,

i.e., p1 ≥ p2 ≥ · · · ≥ pN .

Proof: By definition, we have vi > 0 for all i ∈ [N ]. Therefore s1 = min {1, v1} > 0. Since h(x) is an
increasing function in x, the sequence (vi) is also increasing, so (si) is non-decreasing. Therefore pi =
si − si−1 ≥ 0 for i > 1.

Now vN log vN = k > 0. Since x log x ≤ 0 for x ∈ (0, 1], we have vN > 1. So sN = min {1, vN} = 1.
Therefore

∑N
i=1 pi = sN = 1. So P is a probability distribution on [N ].

Note that (v2/2) log(Nv2/2) = k/2 < k, so v1 > v2/2. So s1 ≥ s2/2, i.e., p1 ≥ p2. For i ≥ 2,
we have pi − pi+1 = (si − si−1) − (si+1 − si) = 2si − si−1 − si+1. Since h(x) is concave, so is the
function min {1, h(x)}. Therefore, si ≥ (si−1 + si+1)/2, and the sequence (pi) is non-decreasing.

The vector S = (si) ∈ R
N thus represents the (cumulative) distribution function corresponding

to P .

Proof of Theorem 3.2: We claim that the probability distribution P constructed above satisfies
the properties stated in the theorem.

Since P ↓ = P , by Lemma 2.5, we need only verify that si log(Nsi/i) ≤ k for i ∈ [N ]. If si = vi,
then the condition is satisfied with equality. (Note that since k < log N , we have s1 = v1 < 1.)
Else, si = 1 < vi, so si log(Nsi/i) < vi log(Nvi/i) = k.

We now bound the relative entropy S(P‖UN ) from below. Let n be the smallest positive integer
such that vn−1 ≤ 1 and vn > 1. Note that n > 1. We also have n ≤ N , since vN > 1 (as
vN log vN = k > 0). Therefore, we have si = vi (equivalently, Nsi = i2k/si) for i ∈ [n − 1],
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and sn = 1 < vn. Thus, for 1 < i < n,

Npi = i2
k
si − (i − 1)2

k
si−1

= 2
k
si + (i − 1)(2

k
si − 2

k
si−1 )

= 2
k
si + (i − 1)2

k
si−1 (2

k
si
− k

si−1 − 1)

= 2
k
si + Nsi−1(2

k
si
− k

si−1 − 1)

≥ 2
k
si + Nsi−1

(

k

si
− k

si−1

)

ln 2

= 2
k
si − Npik

si
ln 2.

The penultimate line follows from the inequality 2x ≥ 1 + x ln 2 for all x ∈ R. Thus we have

Npi ≥ 2
k
si

1 + k
si

ln 2
. (2)

Since Np1 = Ns1 = 2
k
s1 , this also holds for i = 1.

We bound the relative entropy using Eq. (2).

S(P‖UN ) =
N

∑

i=1

pi log Npi =
n

∑

i=1

pi log Npi

≥
n−1
∑

i=1

pi log
2

k
si

1 + k
si

ln 2
+ pn log Npn

≥
n−1
∑

i=1

pik

si
−

n−1
∑

i=1

pi log

(

1 +
k ln 2

si

)

+ pn log Npn. (3)

We bound each of the three terms in the RHS of Eq. (3) separately.

We start with
∑n−1

i=1
pik
si

. Let p = p1, and let m =
⌊

1
p

⌋

. For every j ∈ [m], there is an i ∈ [n],

say i = ij , such that jp ≤ sij ≤ (j + 1)p. (Otherwise, for some i > 1, the probability pi = si − si−1

is strictly larger than p, an impossibility.)

We interpret the sum
∑n−1

i=2
pi

si
=

∑n−1
i=2

si−si−1

si
as a Riemann sum approximating the area under

the curve 1/x between s1 and sn−1 with the area under the solid lines in Figure 3. This area is
bounded from below by the area under the dashed lines, which corresponds to the area of rectangles
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s 1 s 3s 2 s 4p 2 p 3 p s 5 s 64 p

1 / s 1 1 / s 2 1 / s 3 1 / s 4 1 / s 5 1 / s 6

of uniform width p and height 1/sj+1 for the jth interval. Thus,

n−1
∑

i=1

pik

si
≥ k + k

m
∑

j=1

p · 1

sij+1

≥ k + k
m

∑

j=1

p · 1

(j + 2)p

= k + k

m
∑

j=1

1

j + 2

≥ k + k

∫ m+3

3

1

x
dx

= k + k ln
m + 3

3
. (4)

We lower bound m =
⌊

1
p

⌋

next. Recall that g1(y) = y log(Ny) − k is an increasing function

for y > 1
eN , and p = p1 ≥ 1/N . Consider the value of g1(y) at the point q = 2k

log kN :

g1(q) =
2k

log kN
log

2Nk

log kN
− k > 2k

(

1 − log log kN

log kN

)

− k ≥ 0,

since kN ≥ 16. As g1(q) > g1(p) > 0, we have q > p. Therefore, m ≥ 1
p − 1 ≥ log kN

2k − 1. Together
with Eq. (4), we get

n−1
∑

i=1

pik

si
≥ k(ln log kN − ln 6k + 1). (5)
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Next, we derive a lower bound for the second term in Eq. (3).

−
n−1
∑

i=1

pi log

(

1 +
k ln 2

si

)

= −
n−1
∑

i=1

pi log(si + k ln 2) +
n−1
∑

i=1

pi log si

≥ − log(1 + k ln 2) +
n−1
∑

i=1

pi log si. (6)

Viewing the second term above as a Riemann sum, we get

n−1
∑

i=1

pi log si ≥
∫ sn−1

0
log x dx

≥
∫ 1

0
log x dx

= − 1

ln 2
. (7)

Combining Eq. (6) and (7), we get

−
n−1
∑

i=1

pi log

(

1 +
k ln 2

si

)

≥ − log(1 + k ln 2) − 1

ln 2
. (8)

We bound the third term in Eq. (3) crudely as pn log Npn ≥ −1. Along with the bounds for the
previous two terms, Eq. (5), (8), this shows that

S(P‖UN ) ≥ fL(k,N)
def
= k(ln log kN − ln 6k + 1) − log(1 + k ln 2) − 1 − 1

ln 2
. (9)

This proves the lower bound on the relative entropy.

Moving to an upper bound, we have for i ≥ 2,

Npi = i2
k
si − (i − 1)2

k
si−1

= 2
k
si + (i − 1)(2

k
si − 2

k
si−1 )

≤ 2
k
si ,

since the second term is negative. This also holds for i = 1, since p1 = s1 and s1 log Ns1 = k.
Therefore,

S(P‖UN ) =
n

∑

i=1

pi log Npi

≤
n

∑

i=1

kpi

si

≤ k + k

∫ 1

s1

1

s
ds

= k − k ln s1

≤ k + k ln

(

log Nk

k

)

= k(1 − ln k + ln(log Nk)).
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In the last inequality, we used the lower bound s1 ≥ k/ log Nk.

The upper and lower bounds on the relative entropy of P with respect to the uniform distribution
both behave as k log log Nk up to constant factors.

Proof of Theorem 1.1: The dominating term in both of lower bound and upper bound on the
relative entropy S(P‖UN ), with P as in Theorem 3.2, is k ln log Nk when N is large as compared
with k. Specifically, when N > 236k2

, we have

1

2
k log log Nk ≤ S(P‖UN ) ≤ 2k log log Nk.

By hypothesis, 1 ≤ k and by Lemma 2.4, we have k ≤ log N . Thus, S(P‖UN ) = Θ(D(P‖UN ) log log N).
The same holds for the ensembles constructed in Theorem 3.1.

The separation we demonstrated above is the best possible for ensembles of distributions that have
a uniform average distribution.

Theorem 3.5 For any positive integer N , and any ensemble E = {(λj , Qj) : j ∈ [M ]} of distri-

butions over [N ] such that
∑M

j=1 λjQj = UN , we have

χ(E) ≤ K(2 ln log N − ln K + 1) + 16,

where K = D(E).

Proof: Let D(Qj‖UN ) = kj. We show that S(Qj‖UN ) ≤ kj(2 ln log N − ln kj + 1) when kj ≥ 16
N .

When kj < 16
N , we have S(Qj‖UN ) < 16. Since k(2 ln log N − ln k + 1) is a concave function in k,

averaging over j with respect to the distribution Λ = (λj) gives the claimed bound.

Fix an j such that kj > 16
N . Let R = Q↓

j . Note that D(R‖UN ) = kj and S(R‖UN ) = S(Qj‖UN ).
Consider the distribution P constructed as in Section 3 with k = kj . Using the notation of that

section, we have si log(Nsi/i) = kj for all i < n, and sn = 1. Let ti =
∑i

l=1 rl, where rl
def
=

Pr(R = l). By definition, we have ti log(Nti/i) ≤ kj = si log(Nsi/i). Since the function gi(y) =
y log(Ny/i) is strictly increasing for y ≥ i/Ne, and ti ≥ i/N (Fact 2.1), we have ti ≤ si for i < n.
Since si = 1 for i ≥ n, we have ti ≤ si for these i as well. In other words, P � R. By Fact 2.2,
we have H(P ) ≤ H(R). This is equivalent to S(R‖UN ) ≤ S(P‖UN ). By Theorem 3.2, S(P‖UN ) ≤
kj(ln log(Nkj) − ln kj + 1). Since kj ≤ log N , this is at most kj(2 ln log N − ln kj + 1).

Finally, we observe that this is also the best separation possible for an ensemble of quantum states
with a completely mixed ensemble average.

Theorem 3.6 For any positive integer N , and any ensemble E = {(λj , ρj) : j ∈ [M ]} of quantum

states ρj over a Hilbert space of dimension N such that
∑M

j=1 λjρj = I
N , the completely mixed state

of dimension N , we have

χ(E) ≤ K(2 ln log N − ln K + 1) + 16,

where K = D(E).

Proof: Let Qj be the probability distribution on [N ] corresponding to the eigenvalues of ρj . By
definition of observational divergence for quantum states, D(Qj‖UN ) ≤ D(ρj‖ I

N ). Further, we
have S(ρj‖ I

N ) = S(Qj‖UN ). We now apply the same reasoning as in the proof of Theorem 3.5,
note that the divergence of the ensemble {(λj , Qj) : j ∈ [M ]} is bounded by D(E), and that the
RHS in the statement is a non-decreasing function of K. This gives us the stated bound. (Note
that we do not need

∑M
j=1 λjQj = UN to use the reasoning in Theorem 3.5.)
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A Implications for quantum protocols

A.1 Quantum string commitment

A string commitment scheme is an extension of the well-studied and powerful cryptographic
primitive of bit commitment . In such schemes, one party, Alice, wishes to commit an entire
string x ∈ {0, 1}n to another party, Bob. The protocol is required to be such that Bob not be
able to identify the string until it is revealed by Alice. In turn, Alice should not be able to renege
on her commitment at the time of revelation. Formally, quantum string commitment protocols are
defined as follows [1, 3].

Definition A.1 (Quantum string commitment (QSC)) Let P = {px : x ∈ {0, 1}n} be a prob-
ability distribution and let B be a measure of information contained in an ensemble of quantum
states. A (n, a, b)-B-QSC protocol for P is a quantum communication protocol between two parties,
Alice and Bob. Alice gets an input x ∈ {0, 1}n chosen according to the distribution P . The starting
joint state of the qubits of Alice and Bob is some pure state independent of x. The protocol runs in
two phases: the commit phase, followed by the reveal phase. There are no intermediate measure-
ments during the protocol. At the end of the reveal phase, Bob measures his qubits according to a
POVM {My : y ∈ {0, 1}n}∪ {I −∑

y My} to determine the value of the committed string by Alice
or to detect cheating. The protocol satisfies the following properties.

1. (Correctness) Suppose Alice and Bob act honestly. Let ρx be the state of Bob’s qubits at the
end of the reveal phase of the protocol, when Alice gets input x. Then (∀x, y) Tr Myρx = 1 iff
x = y, and 0 otherwise.

2. (Concealing property) Suppose Alice acts honestly, and Bob possibly cheats, i.e., deviates
from the protocol in his local operations. Let σx be the state of Bob’s qubits after the commit
phase when Alice gets input x. Then the B information B(E) of the ensemble E = {px, σx} is
at most b. In particular, this also holds when both Alice and Bob follow the protocol honestly.

3. (Binding property) Suppose Bob acts honestly , and Alice possibly cheats. Let c ∈ {0, 1}n

be a string in a special cheating register C with Alice that she keeps independent of the rest of
the registers till the end of the commit phase. Let τc be the state of Bob’s qubits at the end of

the reveal phase when Alice has c in the cheating register. Let qc
def
= Tr Mcτc. Then

∑

c∈{0,1}n

pcqc ≤ 2a−n

The idea behind the above definition is as follows. At the end of the reveal phase of an honest
run of the protocol Bob identifies x from ρx by performing the POVM measurement {My}y ∪ {I −
∑

y My}. He accepts the committed string to be x iff the observed outcome y = x; this happens
with probability Tr Mxρx. He declares that Alice is cheating if outcome I − ∑

x Mx is observed.
Thus, at the end of an honest run of the protocol, with probability 1, Bob accepts the committed
string as being exactly Alice’s input string. The concealing property ensures that the amount
of B information about x that a possibly cheating Bob gets is bounded by b. In bit-commitment
protocols, the concealing property is quantified in terms of the probability with which Bob can guess
Alice’s bit. Here we instead use different notions of information contained in the corresponding
ensemble. The binding property ensures that when a cheating Alice wishes to postpone committing
to a string string until after the commit phase, then she succeeds in forcing an honest Bob to accept
her choice with bounded probability (in expectation).
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Strong string commitment, in which both parameters a, b above are required to be 0, is impossible
for the same reason that of strong bit-commitment protocols are impossible [10, 9]. Weaker versions
are nonetheless possible, and exhibit a trade-off between the concealing and binding properties.
The trade-off between the parameters a and b has been studied by several researchers [8, 1, 3].
Buhrman, Christandl, Hayden, Lo, and Wehner [1] study this trade-off both in the scenario of a
single execution of the protocol and also in the asymptotic regime, with an unbounded number of
parallel executions of the protocol. In the asymptotic scenario, they show the following result in
terms of Holevo information (which is denoted by χ).

Theorem A.1 ([1]) Let Π be an (n, a1, b)-χ-QSC scheme. Let Πm represent m independent,
parallel executions of Π (so Π1 = Π). Let am represent the binding parameter of Πm and let

a
def
= limm→∞ am/m. Then, a + b ≥ n.

Jain [3] shows a similar trade-off result regarding QSCs, in terms of the divergence information of
an ensemble (denoted by D).

Theorem A.2 ([3]) For single execution of the protocol of an (n, a, b)-D-QSC scheme,

a + b + 8
√

b + 1 + 16 ≥ n.

As mentioned before, for any ensemble E , divergence information is bounded by the Holevo χ-
information D(E) ≤ χ(E) + 1. This immediately implies:

Theorem A.3 ([3]) For single execution of the protocol of a (n, a, b)-χ-QSC scheme

a + b + 8
√

b + 2 + 17 ≥ n.

As Jain shows, this implies the asymptotic result due to Buhrman et al. (Theorem A.1).

The separation that we demonstrate between divergence and Holevo information (Theorem 1.1)
shows that for some ensembles over n qubits, D(E) may be a log n larger than χ(E). For such
ensembles the binding-concealing trade-off of Theorem A.2 is stronger than that of Theorem A.1.

A.2 Privacy trade-off for two-party protocols for relations

Let us consider two-party protocols between Alice and Bob for computing a relation f ⊆ X ×Y×Z.
The goal here is to find a z ∈ Z such that (x, y, z) ∈ f , when Alice and Bob are given x ∈ X
and y ∈ Y, respectively. Jain, Radhakrishnan, and Sen [5] studied to what extent the two parties
may solve f while keeping their respective inputs hidden from the other party. They showed the
following:

Result A.4 ([6], informal statement) Let µ be a product distribution on X×Y. Let Qµ,A→B
1/3 (f)

represent the one-way distributional complexity of f with a single communication from Alice to
Bob and distributional error under µ at most 1/3. Let X and Y represent the random variables
corresponding to Alice and Bob’s inputs respectively. If there is a quantum communication protocol
for f where Bob leaks divergence information at most b about his input Y , then Alice leaks divergence
information at least Ω(Qµ,A→B

1/3 (f)/2O(b)) about her input X. A similar statement also holds with
the roles of Alice and Bob interchanged.
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From the upper bound on the divergence information in terms of Holevo information this immedi-
ately implies the following.

Result A.5 ([6], informal statement) Let µ be a product distribution on X×Y. Let Qµ,A→B
1/3 (f)

represent the one-way distributional complexity of f with a single communication from Alice to
Bob and distributional error under µ at most 1/3. Let X and Y represent the random variables
corresponding to Alice and Bob’s inputs respectively. If there is a quantum communication protocol
for f where Bob leaks Holevo information at most b about his input Y , then Alice leaks Holevo
information at least Ω(Qµ,A→B

1/3 (f)/2O(b)) about her input X. A similar statement also holds with
the roles of Alice and Bob interchanged.

It follows from Theorem 1.1 that Result A.4 is much stronger than the second, Result A.5 in case
the ensembles arising in the protocol between Alice and Bob has divergence information much
smaller than its Holevo information.
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