
Discrete Mathematics U. Waterloo ECE 103, Spring 2010
Ashwin Nayak May 25, 2010

Euclidean algorithm

These notes give an alternative, recursive presentation of the Euclidean algorithm for calculating the GCD
of two non-negative integers (Algorithms 2.3.4 and 2.3.7 in the course notes). The recursive versions are
simpler to describe and prove correct. In practice, that is, if you were to write computer programs for these
algorithms, the iterative versions in the course notes would run faster.

Recall the following property of GCDs:

Proposition 1 For any integers a, b, q, r with a = qb + r, gcd(a, b) = gcd(b, r).

The Euclidean algorithm divides the larger number, say a by the smaller one, say b, to get a = qb+r, where r
is the remainder (0 ≤ r < b), and then applies the above principle. This is repeated until the GCD of the
two numbers is obvious.

Example 1 Compute gcd(2247, 973), using the Euclidean algorithm.

Solution : We collect our calculations in the following table.

Step a b division r
1 2247 973 2247 = 2× 973 + 301 301
2 973 301 973 = 3× 301 + 70 70
3 301 70 301 = 4× 70 + 21 21
4 70 21 70 = 3× 21 + 7 7
5 21 7 21 = 3× 7 + 0 0
6 7 0

Finally, the algorithm returns gcd(2247, 973) = gcd(7, 0) = 7.

We can summarise this method with the following recursive description.

Algorithm 1: EUCLID(a, b), a recursive algorithm to compute GCDs
input : Non-negative integers a, b such that b ≤ a
output: gcd(a, b)

if b = 0 then
return a;

else
Divide a by b to get a = qb + r, where r is the remainder;
return EUCLID(b, r);

Due to Proposition 1, it is intuitively clear that the algorithm is correct. We may prove this rigorously by
strong induction.

Note: It is not clear at the outset on which parameter we should perform the induction, or that we should
use induction in the first place. The use of recursion indicates that induction would be a natural proof
method—it is geared precisely towards proving properties of (positive) integers given that the property
holds for smaller integers. Moreover, observe that in every recursive call of the algorithm, the second
input r is necessarily smaller than the original second input b. The first input may have the same value; this
happens when b = a. So we choose to conduct the induction based on the second input to the algorithm.

Theorem 2 The algorithm EUCLID(a, b) returns gcd(a, b), for any non-negative integers a, b such that b ≤ a.

1



Proof : The proof is by induction on b = min {a, b}.

Base case: b = 0. In this case, the algorithm returns the correct value, as gcd(a, 0) = a for any non-negative
integer a.

Induction hypothesis: assume that EUCLID(c, d) = gcd(c, d) for any non-negative integers c, d such that 0 ≤
d ≤ n.

Inductive step: Consider a, b, such that min {a, b} = b = n + 1. EUCLID(a, b) returns EUCLID(b, r). By the
Division Algorithm, the remainder r satisfies 0 ≤ r < b = n + 1, so 0 ≤ r ≤ n. By the induction hypothe-
sis, EUCLID(b, r) = gcd(b, r), which is equal to gcd(a, b) by Proposition 1.

The GCD of two numbers satisfies an important property that it may be written as an integer combination
of the numbers.

Theorem 3 (Bézout Lemma) Let a, b be two non-negative integers, and let d = gcd(a, b). Then there are inte-
gers x, y such that d = ax + by.

This property follows directly from the Euclidean algorithm, and the numbers x, y as above may be com-
puted using our calculations for the GCD. Suppose the number returned in the else branch of EUCLID(a, b)
is d = gcd(b, r), and that we have found integers u, v such that d = ub+vr. Since r = a−qb, we can express d
as a combination of a, b. Indeed, d = ub + v(a− qb) = va + (u− vq)b, so we may take x = v and y = u− vq.
We may modify the algorithm to keep track of these integers.

Algorithm 2: EXT-EUCLID(a, b), the extended Euclidean algorithm
input : Non-negative integers a, b such that b ≤ a
output: (d, x, y) such that d = gcd(a, b) and ax + by = d

if b = 0 then
return (a,1,0);

else
Divide a by b to get a = qb + r, where r is the remainder;
Let (d, u, v) = EXT-EUCLID(b, r);

Let x = v, and y = u− vq;

return (d, x, y);

Let us see how this works for the numbers in Example 1.

Example 2 Compute numbers x, y such that 2247x + 973y = gcd(2247, 973) = 7.

Solution : Starting with the table in Example 1, we work up from the last row, writing 7 = ax + by =
7(1) + 0(0). The pair x, y in row i form the pair u, v for the previous row (i − 1). We now compute the
pair x, y for row (i− 1), and continue this way until we reach row 1.

Step a b division: a = bq + r r u v x = v y = u− vq
1 2247 973 2247 = 2× 973 + 301 301 13 -42 -42 97
2 973 301 973 = 3× 301 + 70 70 -3 13 13 -42
3 301 70 301 = 4× 70 + 21 21 1 -3 -3 13
4 70 21 70 = 3× 21 + 7 7 0 1 1 -3
5 21 7 21 = 3× 7 + 0 0 1 0 0 1
6 7 0 1 0

The algorithm returns (7,−42, 97), and we may verify that 7 = (−42)2247 + (97)973.

2



We may prove by strong induction that the algorithmEXT-EUCLID(a, b) correctly returns a triple (d, x, y)
such that d = gcd(a, b) and ax + by = d, whenever b ≤ a. The argument is similar to that for Theorem 2,
and is left as an exercise. The Bézout Lemma follows directly from the correctness of the algorithm.

3


