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1 Introduction

A qubit (short form for a quantum bit) is a physical object with two “perfectly distinguishable” physical
states which are identified with the classical states 0 and 1. Mathematically, these states are represented by
two orthonormal vectors in C2, denoted by |0〉 and |1〉 in the Dirac bra-ket notation.

A general qubit state is any linear combination of the two basis states with unit norm: |φ〉 = α|0〉 + β|1〉
where |α|2 + |β|2 = 1. Such state is called a superposition of the two basis states, and the coefficients α and β
are called the amplitudes of the corresponding states |0〉 and |1〉, respectively.

The state of a qubit may be “read out” by conducting an experiment. In its simplest form, an experiment
is captured by an orthonormal basis |ei〉, i = 0, 1 for C2. The outcome of the measurement is i with proba-
bility |〈ei|φ〉|2, and the state “collapses” to |ei〉. Here ‘〈ey|’ is in the ‘bra’ notation and may be taken as the
conjugate transpose of the ket |ey〉which is viewed as a column vector.

The nature of information carried by a qubit differs from a classical bit in a fundamental sense. The follow-
ing example of (approximate) oblivious transfer due to [Bennett, Brassard, Breidbard, Wiesner ’83] illustrates
this very well. Note: This scheme was re-discovered as random access encoding by [Ambainis, Nayak, Ta-
Shma, Vazirani ’99].

Oblivious Transfer. Merlin wishes to reveal exactly one of two bits x1, x2 to Arthur, who wishes to keep
the bit he wants to know secret from Merlin. How can they achieve this?

A quantum solution is to encode the two bits x1, x2 ∈ {00, 01, 10, 11} into one qubit in a manner that Arthur
can extract with good confidence any one of the two bits. We will see later in the class that such an encoding
is necessarily lossy, i.e., does not allow simultaneous decoding of both the bits.

Let

φ0 =
1√
2

(|0〉+ |1〉)

φ1 =
1√
2

(−|0〉+ |1〉)

Then we use the following encoding

00→ |0〉+ |φ0〉
01→ |0〉 − |φ1〉
10→ |1〉+ |φ0〉
11→ |1〉+ |φ1〉

where the states on the right are taken to be the proper normalized vectors in the stated direction.

If we measure the encoding of, say, 01 in the standard basis we observe a ‘0’ with probability equal to the
amplitude of |0〉 in the encoding. This probability is:∣∣∣∣ 〈0|(|0〉 − |φ1〉)

‖ |0〉 − |φ1〉 ‖

∣∣∣∣2 =
(1 + 1/

√
2)2

(1 + 2/
√

2 + 1)2

= cos2 π

8
= 0.853 . . .
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Figure 1: The encoding for oblivious transfer.

If we measure the encoding in the basis {φ0, φ1} then we will observe φ1 with the same probability. Simi-
larly, measuring the other states in the first basis reveals the first bit with probability 0.853 . . ., and measur-
ing in the second basis reveals the second bit.

Such a scheme is not possible with classical encoding.

Theorem 1.1 (ANTV ’99) There does not exist any classical (randomized) encoding of two bits into one bit such
that we can decode an arbitrary one of the two bits with probability greater than 1/2.

(Try to convince yourself of this.)

The following property of qubits ensures that Arthur cannot simultaneously decode both bits.

Theorem 1.2 (Nayak ’99) No measurement on any encoding of two bits into one qubit reveals both encoded bits
simultaniously with probability greater than 1/2 (on average over a uniformly random choice of the two bits).

We will prove a more general version of this theorem in a couple of lectures.

2 Systems with many qubits

In general, the state of an n qubit system can be any unit-norm linear combination of the 2n basis states in
{0, 1}n. That is, any state can be written as

|φ〉 =
∑

x∈{0,1}n
αx|x〉

where ∑
x

|αx|2 = 1.

A measurement in the standard basis will collapse the state to the probability distribution
{
|αx|2 , x

}
. More

general measurements are given by orthonormal bases {|ey〉}y for the Hilbert space C2n . Here the outcome
is ‘y’ with probability |〈ey|φ〉|2, and the state collapses to |ey〉, a state consistent with the outcome.
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Figure 2: Mapping strings to an error-correcting code.

Given that it takes an exponential number of parameters to specify an arbitrary quantum state of n qubits,
it is natural to ask if we can encode as much (an exponential amount) classical information in n qubits.
Buhrman, Cleve, Watrous, de Wolf [2001] showed one scenario where this is possible.

Quantum Fingerprints. A quantum fingerprint allows us to encode 2O(n) bits into n qubits in a “useful
manner”.

The encoding, or fingerprint, works as follows. Let m = 2O(n), where we will specify the constants later.
Consider any m-bit string x. Map x ∈ {0, 1}m to a longer string x̂ ∈ {0, 1}m̂, where m̂ = O(m) and the
strings x̂ lie in an error-correcting code.

An error-correcting code C ⊂ {0, 1}m̂ is a set of strings such that every pair of strings differ in at least δm̂
coordinates, for some parameter 0 ≤ δ ≤ 1. The parameter d = δm̂ is called the minimum distance of the
code. We are interested in codes where δ > 0 is a constant.

Now, we construct the quantum fingerprint for x as:

|φx〉 =
1√
m̂

m̂∑
i=1

|i, xi〉

In the next lecture we will see how these fingerprints may be used effectively in a communication protocol.
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