1 Classical Linear Code (contd.)

Definition 1 Let \vec{g} and \vec{e} be any codeword and error respectively. The syndrome \vec{s} of \vec{e} is defined to be

 $\vec{s} = H(\vec{e}) = H(\vec{g} \oplus \vec{e})$

Note that the syndrome of \vec{e} is independent of the encoded data g, a useful property in the quantum setting. For any $\vec{e_1}$, $\vec{e_2}$ with syndromes $\vec{s_1}$, $\vec{s_2}$, we have

$$\begin{array}{ll} (\vec{s}_1 = \vec{s}_2) & \Longleftrightarrow & H(\vec{e}_1) = H(\vec{e}_2) \\ & \Leftrightarrow & H(\vec{e}_1 - \vec{e}_2) = 0 \\ & \Leftrightarrow & D(\vec{e}_1, \vec{e}_2) > d \end{array}$$

where $D(\vec{e}_1, \vec{e}_2)$ is the Hamming distance between the two errors. In particular, each element in the set of errors $\{\vec{e}_i\}$ can be corrected as long as $\forall i$

$$\operatorname{wt}(\vec{e}_i) = D(\vec{e}_i, 0) \leq \left\lfloor \frac{d-1}{2} \right\rfloor$$

Example 2 Consider the [7, 4, 3] code. Let $\vec{e}_0 = 0$ and \vec{e}_i be all zeroes except at the *i*th entry. Then

$$H(\vec{e_i}) = the \ i^{th} \ column \ of H$$

In other words, the 3-bit syndrome encodes "which bit has an error" in base 2. The Hamming code above can be generalized to have parameters $[2^r, 2^r - 1 - r, 3]$, and the decoding property holds for all of them.

2 CSS (Calderbank-Shor-Steane) Codes

Consider two linear codes $C_B = [n, k_B, d_B]$ and $C_P = [n, k_P, d_P]$. Then, we may derive codes to correct for quantum bit flip and phase flip errors by doing the following

- 1. Generate M_Z from H_B by replacing 0 with I and 1 with Z.
- 2. Generate M_X from H_P by replacing 0 with I and 1 with X.

The rows (tensor product of Pauli matrices) are now called parity check stabilizers S_i with the property that $\forall i$

$$S_i |\psi\rangle_L = |\psi\rangle_L$$

In addition, for the stabilizer generators to commute, we require

$$\begin{split} C_P^{\perp} \leq C_B & \Longleftrightarrow \quad C_B^{\perp} \leq C_P \\ & \Leftrightarrow \quad H_P G_B^T = 0 \\ & \Leftrightarrow \quad H_B G_P^T = 0. \end{split}$$

Example 3 7-bit Steane Code. Both C_P and C_B are taken to be the [7, 4, 3] Hamming code.

$$M_{Z} = \begin{pmatrix} Z & Z & Z & I & Z & I & I \\ Z & Z & I & Z & I & Z & I \\ Z & I & Z & Z & I & I & Z \end{pmatrix}$$
$$M_{X} \begin{pmatrix} X & X & X & I & X & I & I \\ X & X & I & X & I & X & I \\ X & I & X & X & I & I & X \end{pmatrix}$$

3 Explicit codewords

Let X_i, Z_i be the rows of M_X, M_Z . Note that

1. For all $|\psi\rangle$ we have

$$\prod_{i} (I + X_i) \prod_{j} (I + Z_j) |\psi\rangle \in C$$

2. Let $l \in C_B$, then

$$\prod_{j} \left(\frac{I + Z_j}{2} \right) |l\rangle = |l\rangle$$

In order to obtain an explicit characterization of the codewords, we have

$$\begin{split} |l\rangle_L &= \frac{1}{\sqrt{2^{n-k+p}}} \prod_i (I+X_i) \prod_j \left(\frac{I+Z_j}{2}\right) |l\rangle \\ &= \frac{1}{\sqrt{2^{n-k+p}}} \prod_i (I+X_i) |l\rangle \\ &= \frac{1}{|C_p^{\perp}|} \sum_{w \in C_p^{\perp}} |l+w\rangle \end{split}$$

So, there are $\frac{2^{k_B}}{2^{n-k_P}}$ orthogonal $|l\rangle_L$. That gives the correct number of basis states for the stabilizers. As an example, we obtain the following description for the logical encoding of the 7-bit Steane code

$$\begin{split} |0\rangle_l &= \frac{1}{\sqrt{8}} \quad (|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ \quad |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle_l &= \frac{1}{\sqrt{8}} \quad (|1111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle \end{split}$$

+
$$|1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle)$$