## 1 Classical Linear Code (contd.)

Definition 1 Let $\vec{g}$ and $\vec{e}$ be any codeword and error respectively. The syndrome $\vec{s}$ of $\vec{e}$ is defined to be

$$
\vec{s}=H(\vec{e})=H(\vec{g} \oplus \vec{e})
$$

Note that the syndrome of $\vec{e}$ is independent of the encoded data $g$, a useful property in the quantum setting. For any $\vec{e}_{1}, \vec{e}_{2}$ with syndromes $\vec{s}_{1}, \vec{s}_{2}$, we have

$$
\begin{aligned}
\left(\vec{s}_{1}=\vec{s}_{2}\right) & \Longleftrightarrow H\left(\vec{e}_{1}\right)=H\left(\vec{e}_{2}\right) \\
& \Longleftrightarrow H\left(\vec{e}_{1}-\vec{e}_{2}\right)=0 \\
& \Longleftrightarrow D\left(\vec{e}_{1}, \vec{e}_{2}\right) \geq d
\end{aligned}
$$

where $D\left(\vec{e}_{1}, \vec{e}_{2}\right)$ is the Hamming distance between the two errors. In particular, each element in the set of errors $\left\{\vec{e}_{i}\right\}$ can be corrected as long as $\forall i$

$$
\mathrm{wt}\left(\vec{e}_{i}\right)=D\left(\vec{e}_{i}, 0\right) \leq\left\lfloor\frac{d-1}{2}\right\rfloor
$$

Example 2 Consider the $[7,4,3]$ code. Let $\vec{e}_{0}=0$ and $\vec{e}_{i}$ be all zeroes except at the $i^{\text {th }}$ entry. Then

$$
H\left(\vec{e}_{i}\right)=\text { the } i^{\text {th }} \text { column of } H
$$

In other words, the 3-bit syndrome encodes "which bit has an error" in base 2. The Hamming code above can be generalized to have parameters $\left[2^{r}, 2^{r}-1-r, 3\right]$, and the decoding property holds for all of them.

## 2 CSS (Calderbank-Shor-Steane) Codes

Consider two linear codes $C_{B}=\left[n, k_{B}, d_{B}\right]$ and $C_{P}=\left[n, k_{P}, d_{P}\right]$. Then, we may derive codes to correct for quantum bit flip and phase flip errors by doing the following

1. Generate $M_{Z}$ from $H_{B}$ by replacing 0 with $I$ and 1 with $Z$.
2. Generate $M_{X}$ from $H_{P}$ by replacing 0 with $I$ and 1 with $X$.

The rows (tensor product of Pauli matrices) are now called parity check stabilizers $S_{i}$ with the property that $\forall i$

$$
S_{i}|\psi\rangle_{L}=|\psi\rangle_{L}
$$

In addition, for the stabilizer generators to commute, we require

$$
\begin{aligned}
C_{P}^{\perp} \leq C_{B} & \Longleftrightarrow C_{B}^{\perp} \leq C_{P} \\
& \Longleftrightarrow H_{P} G_{B}^{T}=0 \\
& \Longleftrightarrow H_{B} G_{P}^{T}=0
\end{aligned}
$$

Example 3 7-bit Steane Code. Both $C_{P}$ and $C_{B}$ are taken to be the $[7,4,3]$ Hamming code.

$$
\begin{aligned}
& M_{Z}=\left(\begin{array}{ccccccc}
Z & Z & Z & I & Z & I & I \\
Z & Z & I & Z & I & Z & I \\
Z & I & Z & Z & I & I & Z
\end{array}\right) \\
& M_{X}\left(\begin{array}{ccccccc}
X & X & X & I & X & I & I \\
X & X & I & X & I & X & I \\
X & I & X & X & I & I & X
\end{array}\right)
\end{aligned}
$$

## 3 Explicit codewords

Let $X_{i}, Z_{i}$ be the rows of $M_{X}, M_{Z}$.
Note that

1. For all $|\psi\rangle$ we have

$$
\prod_{i}\left(I+X_{i}\right) \prod_{j}\left(I+Z_{j}\right)|\psi\rangle \in C
$$

2. Let $l \in C_{B}$, then

$$
\prod_{j}\left(\frac{I+Z_{j}}{2}\right)|l\rangle=|l\rangle
$$

In order to obtain an explicit characterization of the codewords, we have

$$
\begin{aligned}
|l\rangle_{L} & =\frac{1}{\sqrt{2^{n-k+p}}} \prod_{i}\left(I+X_{i}\right) \prod_{j}\left(\frac{I+Z_{j}}{2}\right)|l\rangle \\
& =\frac{1}{\sqrt{2^{n-k+p}}} \prod_{i}\left(I+X_{i}\right)|l\rangle \\
& =\frac{1}{\left|C_{p}^{\perp}\right|} \sum_{w \in C_{p}^{\perp}}|l+w\rangle
\end{aligned}
$$

So, there are $\frac{2^{k_{B}}}{2^{n-k_{P}}}$ orthogonal $|l\rangle_{L}$. That gives the correct number of basis states for the stabilizers. As an example, we obtain the following description for the logical encoding of the 7 -bit Steane code

$$
\begin{array}{rll}
|0\rangle_{l}= & \frac{1}{\sqrt{8}} & (|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
& +\quad|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle) \\
|1\rangle_{l}= & \frac{1}{\sqrt{8}} & (|1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
& + & |1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle)
\end{array}
$$

