
Topics in Quantum Information U. Waterloo CO 781, Fall 2006
Debbie Leung (Instructor) Jibran Rashid (Scribe)
Quantum Error Correction Codes September 20, 2006

1 Noise Models

Consider the task of transmitting a single bit of classical information through a noisy channel. The noise
results in a bit flip with probability p > 0, while with probability 1 − p the bit is transmitted without any
error. Such a channel is known as a binary symmetric channel and is given by

0
1−p //

p

**VVVVVVVVVVVVVVVVVVVVVVVV 0

1
1−p

//
p

44hhhhhhhhhhhhhhhhhhhhhhhh 1

Similarly, we may consider the generalized Pauli channel as an example of a noisy channel for a qubit. The
set of errors now consists of Bit Flip X , Phase Flip Z or both Y = XZ, with each occurring with probability
px, pz and py respectively.

ρ→ E(ρ) = p0ρ+ pxXρX︸ ︷︷ ︸
Bit Flip

+pz ZρZ︸︷︷︸
Phase Flip

+py Y ρY︸ ︷︷ ︸
Both Errors

Y =ZX

Now we shall look at protocols that allow us to correct for these errors.

2 Classical 3-bit repetition code

The first thing that comes to mind when considering classical error correcting codes is redundancy, i.e.
rather than encoding information in a single bit we encode multiple bits with the same information. As the
name implies, the 3-bit repetition code uses three bits to encode a single bit. So we have

0 → 000
1 → 111

The encoded bit strings 000 and 111 are referred to as logical 0 and logical 1. This encoding protects the
input against a single error when it is sent through the binary symmetric channel. The receiver at the end of
the channel has to decide whether the original input was 0 or 1 based on the three output bits of the channel.
It is not difficult to see that majority voting on the logical bits recovers the original bit. This happens with
probability 1 − 3p2 + p3. Recall that the original error probability was p which now goes down whenever
p < 1/2.

3 Quantum Error Correction

It is natural to consider whether a similar repetition code could work for quantum information. However,
the following issues need to be dealt with before we can make progress:

1

Input Channel Output 1st bit = 2nd bit 1st bit = 3rd bit
000 000 Y Y

001 Y N
010 N Y
100 N N

111 111 Y Y
110 Y N
101 N Y
011 N N

Table 1: Single Error possibilities for the 3-bit repetition code

1. No Cloning: We cannot copy quantum information, i.e. we cannot have:

|ψ〉 = a |0〉+ b |1〉 → |ψ〉⊗3

2. Handling Measurements. If we try |ψ〉 = a |000〉 + b |111〉 as a possible encoding, then measuring the
output state in order to determine the error would generally also kill the state.

3.1 3-qubit bit flip code

We want to build a code that protects against a bit flip, i.e. with probability p the transmitted qubit |ψ〉 is
taken to X |ψ〉. Let |ψ〉 = a |0〉+ b |1〉. We perform the following encoding:

|0〉 → |0〉L = |000〉
|1〉 → |1〉L = |111〉
|ψ〉 → a |0〉L + b |1〉L = a |000〉+ b |111〉

Now, there are four possible situations that we need to take care of:

|ψ〉L
No Error−−−−−→ a |000〉+ b |111〉

X3−−→ a |001〉+ b |110〉
X2−−→ a |010〉+ b |101〉
X1−−→ a |100〉+ b |011〉

Measuring the eigenvalues of the observables {ZZI, IZZ} we can perform a parity check to determine
with certainty which qubit has been flipped hence allowing us to recover the original state. Note that this
measurement does not destroy the logical state.

3.2 3-qubit phase flip code

We want to build a code that protects against a phase flip, i.e. with probability p the transmitted qubit |ψ〉
is taken to Z |ψ〉. Note that that phase flip error is similar to the bit flip error if we work in the {|+〉 , |−〉}
basis (Z |+〉 = |−〉 and vice versa), where

|+〉 =
1√
2

(|0〉+ |1〉)

|−〉 =
1√
2

(|0〉 − |1〉)

We perform the following encoding:

|ψ〉L = a |+ + +〉+ b |− − −〉

Measuring the observables {XXI, IXX} allows us to recover the original state.

2

4 9-bit Shor code

The Shor code protects a single qubit against any single arbitrary error. The idea is simple – we basically
concatenate the previous two codes resulting in a more robust error correcting scheme. By concatenation we
basically mean that we perform one encoding on top of another. First we encode for the phase flip error
and then encode the resulting state for the bit flip error. The procedure proceeds as follows

Original State |ψ〉 = a |0〉+ b |1〉
Inner Code |ψ〉L1

= a |+ + +〉+ b |− − −〉
Outer Code |ψ〉L2

= a(|000〉+ |111〉)⊗3 + b(|000〉 − |111〉)⊗3

The decoding procedure allows us to recover the original state if only a single bit flip or phase flip error
has occurred. When we decode we first check and correct for a bit flip and then perform the correction on
the resulting state for phase flip. It should be noted that order matters in this process. For the above choice
of logical encoding, the inner code needs to be for the phase flip error and the outer code for bit flip. The
protocol does not work if we reverse the order.

5 Classical Binary Linear [n, k, d] Code

Definition 1 A binary linear [n, k, d] code C is a linear subspace of dimension k (2k codeword possibilities) of Z2
n,

such that the minimum Hamming weight of non-zero codewords is d.

The key idea behind our selection of codewords is the notion that noisy codewords do not overlap, hence
the choice for distance d results in a [n, k, d] code C being able to correct for up to d−1

2 errors. The code
space C is given by the generator matrix G ∈ Zk×n

2 . We may define the parity check matrix H ∈ Z[n−k]×n
2

such that HGT = 0, i.e. for any word in the code space if we do a parity check we obtain 0.

Example 2 [3, 1, 3] code
G =

(
1 1 1

)
H =

(
1 1 0
0 1 1

)
Example 3 [7, 4, 3] Hamming code

G =

1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1
1 1 1 1 1 1 1

H =

 1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

The lecture concluded with a brief preview of CSS codes from the next lecture.

3

