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Shannon’s Noiseless Coding Theorem

Shannon Entropy

Suppose we have X, a classical random variable, {2 a sample space, and p : Q@ — [0, 1] a probability distri-
bution of X.

Definition 1 (Shannon Entropy) Given X, 2, and p as above, we define the Shannon entropy as

H(X) = == p()log, p(x
zeQ

For example, 1 fair coin has entropy H = 1 (representing 1 unit of information).
NB: H(X) = E,(—logp(z)), where E denotes expectation.

For another example consider n fair coins, then it is easy to check that the Shannon entropy is H = n, since
we have p(z) = 27" for each z € Q) = {Tails, Heads}".

1
Also, if p(z) = —

57 z =1,2,..., then the Shannon entropy is H = 2.

Intuition:

1. Uncertainty before learning the value of .

2. Information gained from learning the value of .

Note that the definition allows for the quantity of information to be additive.

Typical Sequences

Consider n random variables X, Xo, ..., X, 1.i.d. source, each X; ~ X. The outcomes are " := z1x5 -2, €

1 .
" Let f(a]z™) = —( no. times a source a occurs in z"), where the f stands for frequency.
n

Expect: For most ™ that f(a|z™) ~ p(a).
Expect: p(z™) = T,p(a)™@*") ~ T, p(a)™P@) = 27 HX)

Definition 2 (Typical Set) For ¢ > 0, we define the typical set as
1) = (& v | ale) — (o) < 157
We say that o™ € T,g,i) is strongly typical.
Definition 3 (Another Typical Set) We define another typical set as below.
1
The = {a:" : ‘—Elogp(x) - H(X)‘ < e}.

We say that ™ € T, . is e-typical.



An exercise is to show that
2" € T = a" € Ty,

and to find € in terms of €.

Theorem 4 (Theorem 12.2 in Nielsen and Chuang, Asymptotic Equipartition Theorem.)
Ve > 0,V6 > 0, Ing such that Vn > ng:

1. Z p(z™) >1-4,

€Ty, e
2. (1— 5)2n,(H(X)—e) < |Tnol < on(H(X)+e)
Proof :

1. LetY := —logp(X) be a random variable, e.g.,if X = q,Y = y = —logp(a). LetY; =
iid. 2" € The <= |23,y —EY)| <e

Law of Large Numbers:

1 & Var (V)
P — P — <
rn(ngy' - )‘ ne?
Y Y
Choose ng := Var (V) ), then Var (V) < 4. Therefore,
€24 ne2

Pr (2" €Ty, >1-4,
X17~~-;X'n

since this is a complementary event than that in the Law of Large Numbers.

2. For one inequality, we have that

12 ) p@") 2|Tel- min p(e") = [Tol - 27HE0T9.
€Ty €

This implies |T;, .| < 2" (X)+€)_ For the other inequality, we have

1-8)< Y pamy< Y 2= Z, 209,

€Ty, . €Ty e

—logp(X;) be

where the first inequality holds by part 1. This implies that |T}, (| > (1 — §)2"(#(X)=€) as required.

Data Compression:

Let X; be an ii.d. source. Then VR > H(X), ¥§ > 0, Ing such that Vn > ny, there exists an encoding

map, &, : " — {0, 1}"R, and a decoding map, D,, : {0, 1}”R — Q7", such that
Pr (Do&,(ax™) #£2™) <4

X1, Xn

where R is the number of bits we are willing to spend per copy of X for the compression and 4 is the fidelity

parameter.

We usually choose our typical set to have e = R — H(X).

Let £,, : T, — {0,1}" be a labeling map for T}, ., and P,(2") = 2" if 2" € T, and P, (z

otherwise. Then, &,, = £,, o P, works.

Quantum Analogue:

") = ERROR



Definition 5 (Von Neumann Entropy) Suppose p is a density matrix with spectral decomposition p =3, p(X)|AXA].
We define the Von Neumann entropy of p as

S(p) == —Tr(plogp) = H(A),
where A is a random variable with values . Recall that log(p) := 3, log(p(X))[AXA[.

The idea is that if we look at the eigenbasis of p we can treat it classically.

Let {¢q, [¢2)} be an ensemble where the |¢,)’s are not necessarily orthogonal and let p be the correspond-
ing density matrix. Again, write the spectral decomposition of p = > qu|V.) 12| as Y\ p(A)[ANA]. We

will apply data compression in the eigenbasis of p. Notice that p®" = Zp()\")|/\”></\”|, where |\") =
A”L
[A1)|A2) - - - |An) is a tensor product of eigenvectors of p. We let T}, . be the typical set for A™. Define

Pn,e = Z |/\n></\n|,

A" ETy,

which is the projector onto the typical subspace Hr, where Hy = span (T, ). Note that Rank (P, ) =
dim(Hr) = |Ty,.e|. Also, we have the identity

Tr (Phcp®) = > p(\")>1-04. (1)
AET, «

Quantum Sources and Data Compression

Let {¢s,|t2)} be an ii.d. source, |¢,;) € Cq4, and let X be a classical random variable with distribution
q(x) := qg.

Theorem 6 (Data Compression Theorem) 3ng such that Yn > ng, 3€,,, D,,, such that

ST @) - F(|tban Xtbon |, Do 0 En([toun Wi |) > 1= 5,

€T, e
where £, : HZ™ — HS™, and R > S(p) = S(3, q()|va Ytbs|).

Proof: Lete = R — S(p) > 0, and let P, . and Hr be as defined earlier. Let £,, be the change of basis from
Hr to HY™®. £,(p) = L1 0 (Pac(p)Pr.c) + leXe|Tr (I — Po.o)(p)(I — Pn.)), where |e) is some state we don’t
care about. Notice we have

|¢T"> = Pn,e|¢m"'> + (I - Pn7e)|¢m"'>-

We can also write p,,¢, being the output of data compression when the input state is 1) )X1zn |, as
pout = Dn 0 En([than Xtban|) = Pr c[than Xtban [ Pr,e + [eXe|Tr (I — Pre)[than Xtoan [(I — Pr.c))-
Then we have
1-8 < Tr(Pnep®")  fromEq. (1)
= D a@") T ([War Ko | o)

zn €Ty e

= Z q(2"™) (Y | Prc|than)

€Ty e

D DI Lo (T )

€Ty e

This proves the result.

An exercise is to check that the converse holds, that is, if R < S(p), then no noiseless data compression is
possible.



Definition 7 (Conditional Entropy) Let X and Y be random variables. We define the conditional entropy as
H(X|Y)= Zp HX|)Y =y) = prylog( (()))
Note that H(X|Y) = H(X,Y) Zp H(X|Y =y).

Definition 8 (Mutual Information) We define mutual information as
I(X:Y)=H(X)- HX|Y).
By the above note, we have that
IX:Y)=HX)-HX|Y)=HX)-HX,Y)+HY)=HY)-HYI|X)=I(Y : X),

so mutual information is symmetric.

Definition 9 (Relative Entropy) We define the relative entropy as
px
H(pllq) = Zp ) log ( x;) :

Note that relative entropy is not symmetric, that is, H(p||q) # H(g||p) in general.
Letting u be the uniform distribution over Q, || = n, we have H(X) = logn — H(p||u).

We also have
I(X :Y) = H(p(z,y)|lp(x)p(y))-

Theorem 10 H (p||q) > 0, with equality if and only if p = q.
The proof of the above result is in Nielsen and Chuang.

Corollary 11

e H(X) <log(n),
o I[(X :Y) > 0, with equality if and only if X and Y are independent,
e HX,Y)<H(X)+H(Y) Subadditivity,

H(X]Y) < H(X),

Zp HX|Y=y) <H <Z(X|Y = y)) Concavity.

Y



