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Shannon Entropy

Suppose we have X , a classical random variable, Ω a sample space, and p : Ω → [0, 1] a probability distri-
bution of X .

Definition 1 (Shannon Entropy) Given X , Ω, and p as above, we define the Shannon entropy as

H(X) ≡ H(p) := −
∑

x∈Ω

p(x) log2 p(x).

For example, 1 fair coin has entropy H = 1 (representing 1 unit of information).

NB: H(X) = Ex(− log p(x)), where E denotes expectation.

For another example consider n fair coins, then it is easy to check that the Shannon entropy is H = n, since
we have p(x) = 2−n for each x ∈ Ω = {Tails,Heads}

n
.

Also, if p(x) =
1

2x
, x = 1, 2, . . ., then the Shannon entropy is H = 2.

Intuition:

1. Uncertainty before learning the value of x.

2. Information gained from learning the value of x.

Note that the definition allows for the quantity of information to be additive.

Typical Sequences

Consider n random variablesX1, X2, . . . , Xn, i.i.d. source, eachXi ∼ X . The outcomes are xn := x1x2 · · ·xn ∈

Ωn. Let f(a|xn) =
1

n
( no. times a source a occurs in xn), where the f stands for frequency.

Expect: For most xn that f(a|xn) ≈ p(a).

Expect: p(xn) = Πap(a)
n·f(a|xn) ≈ Πap(a)

n·p(a) = 2−n·H(X)

Definition 2 (Typical Set) For ǫ > 0, we define the typical set as

T (S)
n,ǫ :=

{

xn : ∀a |f(a|xn) − p(a)| <
ǫ

|Ω|

}

.

We say that xn ∈ T
(S)
n,ǫ is strongly typical.

Definition 3 (Another Typical Set) We define another typical set as below.

Tn,ǫ :=

{

xn :

∣

∣

∣

∣

−
1

n
log p(x) −H(X)

∣

∣

∣

∣

≤ ǫ

}

.

We say that xn ∈ Tn,ǫ is ǫ-typical.
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An exercise is to show that
xn ∈ T (S)

n,ǫ ⇒ xn ∈ Tn,ǫ′ ,

and to find ǫ′ in terms of ǫ.

Theorem 4 (Theorem 12.2 in Nielsen and Chuang, Asymptotic Equipartition Theorem.)
∀ǫ > 0, ∀δ > 0, ∃n0 such that ∀n ≥ n0:

1.
∑

xn∈Tn,ǫ

p(xn) ≥ 1 − δ,

2. (1 − δ)2n(H(X)−ǫ) ≤ |Tn,ǫ| ≤ 2n(H(X)+ǫ).

Proof :

1. Let Y := − log p(X) be a random variable, e.g.,if X = a, Y = y = − log p(a). Let Yi = − log p(Xi) be
i.i.d. xn ∈ Tn,ǫ ⇐⇒ | 1

n

∑

i yi − E(Y )| ≤ ǫ.

Law of Large Numbers:

Pr
Y1,...,Yn

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

yi − E(Y )

∣

∣

∣

∣

∣

≥ ǫ

)

≤
Var (Y )

nǫ2
.

Choose n0 :=
Var (Y )

ǫ2δ
, then

Var (Y )

nǫ2
≤ δ. Therefore,

Pr
X1,...,Xn

(xn ∈ Tn,ǫ) ≥ 1 − δ,

since this is a complementary event than that in the Law of Large Numbers.

2. For one inequality, we have that

1 ≥
∑

xn∈Tn,ǫ

p(xn) ≥ |Tn,ǫ| · min
xn∈Tn,ǫ

p(xn) = |Tn,ǫ| · 2
−n(H(X)+ǫ).

This implies |Tn,ǫ| ≤ 2n(H(X)+ǫ). For the other inequality, we have

(1 − δ) ≤
∑

xn∈Tn,ǫ

p(xn) ≤
∑

xn∈Tn,ǫ

2−n(H(X)−ǫ) = |Tn,ǫ|2
−n(H(X)−ǫ),

where the first inequality holds by part 1. This implies that |Tn,ǫ| ≥ (1 − δ)2n(H(X)−ǫ) as required.

Data Compression:

Let Xi be an i.i.d. source. Then ∀R > H(X), ∀δ > 0, ∃n0 such that ∀n ≥ n0, there exists an encoding

map, En : Ωn → {0, 1}
nR

, and a decoding map, Dn : {0, 1}
nR

→ Ωn, such that

Pr
X1,...,Xn

(D ◦ En(xn) 6= xn) ≤ δ,

whereR is the number of bits we are willing to spend per copy ofX for the compression and δ is the fidelity
parameter.

We usually choose our typical set to have ǫ = R−H(X).

Let Ln : Tn,ǫ → {0, 1}nR be a labeling map for Tn,ǫ, and Pn(xn) = xn if xn ∈ Tn,ǫ and Pn(xn) = ERROR
otherwise. Then, En = Ln ◦ Pn works.

Quantum Analogue:
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Definition 5 (Von Neumann Entropy) Suppose ρ is a density matrix with spectral decomposition ρ =
∑

λ p(λ)|λ〉〈λ|.
We define the Von Neumann entropy of ρ as

S(ρ) := −Tr (ρ log ρ) = H(Λ),

where Λ is a random variable with values λ. Recall that log(ρ) :=
∑

λ log(p(λ))|λ〉〈λ|.

The idea is that if we look at the eigenbasis of ρ we can treat it classically.

Let {qx, |ψx〉} be an ensemble where the |ψx〉’s are not necessarily orthogonal and let ρ be the correspond-
ing density matrix. Again, write the spectral decomposition of ρ =

∑

x qx|ψx〉〈ψx| as
∑

λ p(λ)|λ〉〈λ|. We

will apply data compression in the eigenbasis of ρ. Notice that ρ⊗n =
∑

λn

p(λn)|λn〉〈λn|, where |λn〉 :=

|λ1〉|λ2〉 · · · |λn〉 is a tensor product of eigenvectors of ρ. We let Tn,ǫ be the typical set for Λn. Define

Pn,ǫ =
∑

λn∈Tn,ǫ

|λn〉〈λn|,

which is the projector onto the typical subspace HT , where HT = span (Tn,ǫ). Note that Rank (Pn,ǫ) =
dim(HT ) = |Tn,ǫ|. Also, we have the identity

Tr (Pn,ǫρ
⊗n) =

∑

λn∈Tn,ǫ

p(λn) ≥ 1 − δ. (1)

Quantum Sources and Data Compression

Let {qx, |ψx〉} be an i.i.d. source, |ψx〉 ∈ Cd, and let X be a classical random variable with distribution
q(x) := qx.

Theorem 6 (Data Compression Theorem) ∃n0 such that ∀n ≥ n0, ∃En,Dn, such that
∑

xn∈Tn,ǫ

q(xn) · F (|ψxn〉〈ψxn |,Dn ◦ En(|ψxn〉〈ψxn |)) ≥ 1 − δ,

where En : H⊗n
d → H⊗nR

2 , and R > S(ρ) = S(
∑

x q(x)|ψx〉〈ψx|).

Proof : Let ǫ = R− S(ρ) > 0, and let Pn,ǫ and HT be as defined earlier. Let Ln be the change of basis from
HT to H⊗nR

2 . En(ρ) = Ln ◦ (Pn,ǫ(ρ)Pn,ǫ) + |e〉〈e|Tr ((I − Pn,ǫ)(ρ)(I −Pn,ǫ)), where |e〉 is some state we don’t
care about. Notice we have

|ψxn〉 = Pn,ǫ|ψxn〉 + (I − Pn,ǫ)|ψxn〉.

We can also write ρout, being the output of data compression when the input state is |ψxn〉〈ψxn |, as

ρout = Dn ◦ En(|ψxn〉〈ψxn |) = Pn,ǫ|ψxn〉〈ψxn |Pn,ǫ + |e〉〈e|Tr ((I − Pn,ǫ)|ψxn〉〈ψxn |(I − Pn,ǫ)).

Then we have

1 − δ ≤ Tr (Pn,ǫρ
⊗n) from Eq. (1)

=
∑

xn∈Tn,ǫ

q(xn)Tr (|ψxn〉〈ψxn |Pn,ǫ)

=
∑

xn∈Tn,ǫ

q(xn)〈ψxn |Pn,ǫ|ψxn〉

=
∑

xn∈Tn,ǫ

q(xn)F (|ψxn〉〈ψxn |, ρout).

This proves the result.

An exercise is to check that the converse holds, that is, if R ≤ S(ρ), then no noiseless data compression is
possible.
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Definition 7 (Conditional Entropy) Let X and Y be random variables. We define the conditional entropy as

H(X |Y ) =
∑

y

p(y)H(X |Y = y) = −
∑

x,y

p(x, y) log

(

p(x, y)

p(y)

)

.

Note that H(X |Y ) = H(X,Y ) −H(Y ) =
∑

y

p(y)H(X |Y = y).

Definition 8 (Mutual Information) We define mutual information as

I(X : Y ) = H(X) −H(X |Y ).

By the above note, we have that

I(X : Y ) = H(X) −H(X |Y ) = H(X) −H(X,Y ) +H(Y ) = H(Y ) −H(Y |X) = I(Y : X),

so mutual information is symmetric.

Definition 9 (Relative Entropy) We define the relative entropy as

H(p||q) =
∑

x

p(x) log

(

p(x)

q(x)

)

.

Note that relative entropy is not symmetric, that is, H(p||q) 6= H(q||p) in general.

Letting u be the uniform distribution over Ω, |Ω| = n, we have H(X) = logn−H(p||u).

We also have
I(X : Y ) = H(p(x, y)||p(x)p(y)).

Theorem 10 H(p||q) ≥ 0, with equality if and only if p = q.

The proof of the above result is in Nielsen and Chuang.

Corollary 11

• H(X) ≤ log(n),

• I(X : Y ) ≥ 0, with equality if and only if X and Y are independent,

• H(X,Y ) ≤ H(X) +H(Y ) Subadditivity,

• H(X |Y ) ≤ H(X),

•
∑

y

p(y)H(X |Y = y) ≤ H

(

∑

y

(X |Y = y)

)

Concavity.
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