C\&O 781 Topics in Quantum Information
 Quantum Information Theory, Error-correction, and Cryptography
 University of Waterloo
 Fall 2006

Instructors: Debbie Leung and Ashwin Nayak

Assignment 3

Due: Dec. 8, 2006
Question 1. Recall the test performed by Alice and Bob on a $4 n$-qubit state ρ shared equally by the two in the Lo-Chau type protocol of Shor and Preskill (PRL, 2000). They choose a random subset of n of the $2 n$ pairs of qubits and then Alice and Bob both measure each of the n test pairs of qubits in the $|0\rangle,|1\rangle$ basis (the Z-basis) or in the $|+\rangle,|-\rangle$ basis (the X-basis), where the basis is chosen independently, and uniformly at random for each test pair. Alice and Bob abort the protocol when they find more than $\delta-\epsilon$ fraction of disagreements in their measurement outcomes, for either measurement basis.
Recall that the states $\Psi+$ and Ψ - correspond to bit errors, and Φ - and Ψ - correspond to phase errors.
For parts (a-c), suppose ρ is a tensor product of $2 n$ Bell states, with one half of each Bell state held by Alice and the other half by Bob. You may state, without proof, any "tail bound" from probability theory.
(a) [2 marks] Argue that close to $n / 2$ Bell states are measured in each of the two bases: the Z-basis and the X-basis.
(b) [2 marks] Show that with probability exponentially close to 1 , Alice and Bob can determine if the fraction of bit or phase errors in ρ is more than δ.
(c) [2 marks] Show that with probability exponentially close to 1 , the remaining qubits in ρ have fewer than δ fraction of bit and phase errors.
Suppose now that ρ is an arbitrary $4 n$-qubit state shared by Alice and Bob. Let Π be the projector on the subspace of $\mathbb{C}^{2 n}$ spanned by tensor products of Bell states with fewer than δn errors, and ρ^{\prime} the unnormalized state of the qubits remaining after the test.
(d) [4 marks] Argue that $\left\|\rho^{\prime}-\Pi \rho^{\prime} \Pi\right\|_{\text {tr }}$ is exponentially small. In other words, the residual state when the test passes is close to a state in which there are fewer than δn bit and phase errors.

Question 2. [5 marks] Suppose Alice has as input a (classical) random variable X, and engages in a quantum communication protocol with Bob. Suppose Q denotes Bob's part of the joint quantum state held by Alice and Bob at some point in the protocol.
(a) If at this point, Alice sends a qubit, and Q^{\prime} denotes Bob's new state, show that $I\left(X: Q^{\prime}\right) \leq I(X: Q)+2$.
(b) Next, if Bob sends one qubit to Alice, and $Q^{\prime \prime}$ denotes his new state, show that $I\left(X: Q^{\prime \prime}\right) \leq I\left(X: Q^{\prime}\right)$.

Question 3. (a) [2 marks] Verify that $I(X: Y Z)=I(X Y: Z)+I(X: Y)-I(Y: Z)$.
(b) [3 marks] Suppose Q is a quantum encoding of n uniformly random bits $X=X_{1} X_{2} \cdots X_{n}$. Show that

$$
I(X: Q) \geq \sum_{i=1}^{n} I\left(X_{i}: Q\right)
$$

Question 4. [8 marks] Exercise 11.19 in Nielsen and Chuang, 4 marks for each part.

Question 5. [12 marks]
Consider a quantum channel \mathcal{N} from Alice to Bob, and its isometric extension U (the isometry mapping each input of the channel to a bipartite state shared by Bob and Eve). Let A, B, E label their respective systems. Appending the isometric extension U with a partial trace of B results in some "conjugate channel" \mathcal{N}^{c} from Alice to Eve (this is unique up to a final unitary on E).
\mathcal{N} is called degradable if $\exists \mathcal{D}$ a TCP map (the degrading map) such that $\mathcal{D} \circ \mathcal{N}=\mathcal{N}^{c}$. \mathcal{N} is called anti-degradable if $\exists \mathcal{A}$ a TCP map such that $\mathcal{A} \circ \mathcal{N}^{c}=\mathcal{N}$.
(a) [4 marks] Prove that if \mathcal{N} is antidegradable, $Q(\mathcal{N})=0$.
(b) [4 marks] Show that the amplitude damping channel (eqs. (8.107)-(8.108) in Nielsen and Chuang) is degradable and antidegradable for $\gamma \leq 0.5$ and $\gamma \geq 0.5$.
(c) [4 marks extra credit] Show that degradable channels have single letter expression for quantum capacity.
(d) [4 marks] Find the quantum capacity of the amplitude damping channel as a function of γ. (Hint, the optimal input in the single letter optimization has Schmidt basis being the computation basis.)

