C&O 781 Topics in Quantum Information Quantum Information Theory, Error-correction, and Cryptography University of Waterloo Fall 2006

> Instructors: Debbie Leung and Ashwin Nayak Assignment 1 Due: Oct 20, 2006

Total: 40 marks. In questions 1–4, \mathcal{H} and \mathcal{K} are finite dimensional Hilbert spaces.

Question 1. [5 marks] Let $M \in L(\mathcal{H} \otimes \mathcal{K})$ be any linear operator on $\mathcal{H} \otimes \mathcal{K}$. Let $\{|e\rangle\}$ be any orthonormal basis for \mathcal{H} . Recall that the partial trace operation is a linear transformation from $L(\mathcal{H} \otimes \mathcal{K})$ onto $L(\mathcal{K})$, and is defined as:

$$\operatorname{Tr}_{\mathcal{H}}(M) = \sum_{e} (\langle e | \otimes I \rangle M(|e\rangle \otimes I).$$

Prove that the partial trace operation is well-defined. I.e., it is independent of the choice of basis $\{|e\rangle\}$.

Question 2. [5 marks] Let $|\psi\rangle \in \mathcal{H} \otimes \mathcal{K}$ be a bipartite pure state such that $\operatorname{Tr}_{\mathcal{H}}(\psi) = \rho$. If $\mathcal{E} = \{p_i, \psi_i\}$ is any mixed state over \mathcal{K} with the same density matrix ρ , show that there is a measurement on \mathcal{H} which when performed on $|\psi\rangle$, results in the mixed state \mathcal{E} in \mathcal{K} .

Question 3. [5 marks] Let $|\psi\rangle \in \mathcal{H} \otimes \mathcal{K}$ be a bipartite pure state such that $\operatorname{Tr}_{\mathcal{H}}(\psi) = \rho$, and $\rho = \sum_i \lambda_i |v_i\rangle \langle v_i|$ in diagonal form. Show that there is an orthonormal set $\{|u_i\rangle\}$ in \mathcal{H} such that $|\psi\rangle = \sum_i \sqrt{\lambda_i} |u_i\rangle |v_i\rangle$.

Question 4. [5 marks] Find the relation between two sets of operation elements $\{A_k\}$ and $\{B_l\}$ that correspond to the same TCP map $\mathcal{E} : L(\mathcal{H}) \to L(\mathcal{K})$. I.e.,

$$\mathcal{E}(\rho) = \sum_{k} A_k \rho A_k^{\dagger} = \sum_{l} B_l \rho B_l^{\dagger} \quad \text{for} \ k \le l$$

Question 5. [5 marks] Consider the "amplitude damping channel" \mathcal{E} acting on a single qubit S. The isometric extension to the qubit S and an environment qubit E (the isometry in the unitary representation) acts on the input state $|\psi\rangle = a|0\rangle + b|1\rangle$ as

$$U |\psi\rangle_S |0\rangle_E = a|00\rangle + b \left[\sqrt{1-\gamma} |10\rangle + \sqrt{\gamma} |01\rangle \right]$$

Find the Kraus representation of \mathcal{E} , with the minimal number of operation elements. What event does each of these operation elements represent?

Question 6. [15 marks]

(a) Let C be the 5-qubit stabilizer code with generators IXZZX, XZZXI, ZZXIX, ZXIXZ. How does it correct for up to 1 Pauli error [3 marks]? How does it protect an encoded qubit against the amplitude damping noise $\mathcal{E}^{\otimes 5}$ (up to order γ) [2 marks]?

(b) Consider instead the stabilizer code with generators ZZZZ, XXII, IIXX. Write down a simple basis for the codespace [2 marks]. What can be done to an encoded qubit if the amplitude damping noise $\mathcal{E}^{\otimes 4}$ occurs (assuming small γ)? [6 marks]. Interpret your result [2 mark].

(c) Open problem: Does a 3-qubit amplitude damping code exist?