CO 739 Information Theory and Applications

University of Waterloo, Winter 2024 Instructor: Ashwin Navak

> Assignment 2, Mar. 1, 2024 Due: Fri., Mar. 15, 2024

Question 1. Let XY be jointly distributed random variables on the sample space $\mathcal{X} \times \mathcal{Y}$. For $x \in \mathcal{X}$, let p(x) denote the distribution of Y|(X = x). Let q be an arbitrary distribution over \mathcal{Y} .

(a) Prove that

 $I(X:Y) \leq \mathbb{E}_{x \leftarrow X} S(p(x) || q)$.

(b) Let Y_1, Y_2, \ldots, Y_n be a sequence of jointly distributed random variables, distributed as q. Suppose that $X_1 X_2 \cdots X_n \sim (Y_1 Y_2 \cdots Y_n) | E$, for some event E with $\Pr(E) \geq 2^{-\delta n}$. Prove that

 $S(X_1 X_2 \cdots X_n \| Y_1 Y_2 \cdots Y_n) \leq \delta n ,$

and hence that there is an index *i* such that $X_i \sim q'$, where q' is a distribution close to q in ℓ_1 distance: $\|q' - q\|_1 \in O(\sqrt{\delta}).$

- Question 2. (a) Let XY and UV be two pairs of jointly distributed random variables with $X, U \in \mathcal{X}$ and $Y, V \in \mathcal{Y}$. Prove that $\mathfrak{h}(XY, UV) \ge \mathfrak{h}(X, U)$, i.e., Hellinger distance is monotonic under taking marginals.
- (b) Let $X \coloneqq X_1 X_2 \cdots X_n$ be a random variable, with X_i being mutually independent. Let M be jointly distributed with X, and $S \subseteq [n]$ be a random variable independent of XM such that for every $i \in [n]$, we have $\Pr(i \in S) \leq p$. Prove that

$$I(X_S:M|S) \leq pI(X:M)$$
.

Question 3. Let $\epsilon \in (0, 1)$. Let d be an even positive integer, and $a \in \{\pm 1\}^d$ with exactly d/2 coordinates equal to 1. Let p(a) be the distribution over [d] given by $p(a)_i := \frac{1}{d}(1 + a_i\epsilon)$ for $i \in [d]$.

- (a) Let $X(a) \sim p(a)$. Show that $H(X(a)) \geq \log d c\epsilon^2$ for a universal constant c.
- (b) Let $\delta \in [0, 1)$. Suppose there is an algorithm that learns a with probability at least 1δ given n independent samples from p(a).

(i) Describe a protocol by which a sender can encode a string a as above using only samples from p(a) so that the receiver can identify a with probability at least $1 - \delta$. What is the length of the encoding? (ii) Derive as large a lower bound on n as you can.

Question 4. For $\epsilon \in (0, 1/2)$, we say a subset of strings $C \subseteq \{0, 1\}^n$ is an ϵ -cover if every *n*-bit string x is within Hamming distance ϵn from some element in C.

- (a) Prove that any ϵ -cover C has cardinality $|C| \ge 2^{n(1-h(\epsilon))}$.
- (b) Prove that for large enough n, a uniformly random subset of $\{0,1\}^n$ of size $n^3 2^{(1-h(\epsilon))n}$ is an ϵ -cover with probability at least $1-2^{-\Omega(n)}$. (You may use without proof the inequality $\binom{n}{\epsilon n} \geq 2^{n \ln(\epsilon)}/n$, for n large enough.)