CO 739 Information Theory and Applications
 University of Waterloo, Winter 2024
 Instructor: Ashwin Nayak

Assignment 2, Mar. 1, 2024
Due: Fri., Mar. 15, 2024

Question 1. Let $X Y$ be jointly distributed random variables on the sample space $\mathcal{X} \times \mathcal{Y}$. For $x \in \mathcal{X}$, let $p(x)$ denote the distribution of $Y \mid(X=x)$. Let q be an arbitrary distribution over \mathcal{Y}.
(a) Prove that

$$
\mathrm{I}(X: Y) \leq \mathbb{E}_{x \leftarrow X} \mathrm{~S}(p(x) \| q)
$$

(b) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a sequence of jointly distributed random variables, distributed as q. Suppose that $X_{1} X_{2} \cdots X_{n} \sim\left(Y_{1} Y_{2} \cdots Y_{n}\right) \mid E$, for some event E with $\operatorname{Pr}(E) \geq 2^{-\delta n}$. Prove that

$$
\mathrm{S}\left(X_{1} X_{2} \cdots X_{n} \| Y_{1} Y_{2} \cdots Y_{n}\right) \leq \quad \delta n
$$

and hence that there is an index i such that $X_{i} \sim q^{\prime}$, where q^{\prime} is a distribution close to q in ℓ_{1} distance: $\left\|q^{\prime}-q\right\|_{1} \in \mathrm{O}(\sqrt{\delta})$.

Question 2. (a) Let $X Y$ and $U V$ be two pairs of jointly distributed random variables with $X, U \in \mathcal{X}$ and $Y, V \in \mathcal{Y}$. Prove that $\mathfrak{h}(X Y, U V) \geq \mathfrak{h}(X, U)$, i.e., Hellinger distance is monotonic under taking marginals.
(b) Let $X:=X_{1} X_{2} \cdots X_{n}$ be a random variable, with X_{i} being mutually independent. Let M be jointly distributed with X, and $S \subseteq[n]$ be a random variable independent of $X M$ such that for every $i \in[n]$, we have $\operatorname{Pr}(i \in S) \leq p$. Prove that

$$
\mathrm{I}\left(X_{S}: M \mid S\right) \leq p \mathrm{I}(X: M)
$$

Question 3. Let $\epsilon \in(0,1)$. Let d be an even positive integer, and $a \in\{ \pm 1\}^{d}$ with exactly $d / 2$ coordinates equal to 1 . Let $p(a)$ be the distribution over [d] given by $p(a)_{i}:=\frac{1}{d}\left(1+a_{i} \epsilon\right)$ for $i \in[d]$.
(a) Let $X(a) \sim p(a)$. Show that $H(X(a)) \geq \log d-c \epsilon^{2}$ for a universal constant c.
(b) Let $\delta \in[0,1)$. Suppose there is an algorithm that learns a with probability at least $1-\delta$ given n independent samples from $p(a)$.
(i) Describe a protocol by which a sender can encode a string a as above using only samples from $p(a)$ so that the receiver can identify a with probability at least $1-\delta$. What is the length of the encoding?
(ii) Derive as large a lower bound on n as you can.

Question 4. For $\epsilon \in(0,1 / 2)$, we say a subset of strings $C \subseteq\{0,1\}^{n}$ is an ϵ-cover if every n-bit string x is within Hamming distance ϵn from some element in C.
(a) Prove that any ϵ-cover C has cardinality $|C| \geq 2^{n(1-\mathrm{h}(\epsilon))}$.
(b) Prove that for large enough n, a uniformly random subset of $\{0,1\}^{n}$ of size $n^{3} 2^{(1-\mathrm{h}(\epsilon)) n}$ is an ϵ-cover with probability at least $1-2^{-\Omega(n)}$. (You may use without proof the inequality $\binom{n}{\epsilon n} \geq 2^{n \mathrm{~h}(\epsilon)} / n$, for n large enough.)

