C\&O 739 Information Theory and Applications
 University of Waterloo, Winter 2024
 Instructor: Ashwin Nayak

Assignment 1, Jan. 26, 2024
Due: Fri., Feb. 9, 2024

Question 1. The two parts of this question are unrelated.
(a) Give an example of a random variable X, a prefix-free code C for X, and a Shannon code C^{\prime} for X such that

- $\mathbb{E}|C(X)|<\mathbb{E}\left|C^{\prime}(X)\right|$, and
- a codeword $C(x)$ for some x in the support of X is longer than the codeword $C^{\prime}(x)$.
(b) Let X be a random variable over [m] with distribution p, with $p_{1} \geq p_{2} \geq \cdots \geq p_{m}>0$. Let the probability that $X<i$ be denoted by q_{i}, i.e., $q_{i}=\sum_{j=1}^{i-1} p_{j}$. Define a code C as follows: C_{i} is the first $\left\lceil\log \left(1 / p_{i}\right)\right\rceil$ bits of the binary expansion of q_{i}. We may verify that $\mathbb{E}|C(X)|$ is within 1 bit of the entropy $\mathrm{H}(X)$. Construct the code for the distribution ($0.5,0.25,0.125,0.125$). Then prove for any random variable X as above, that the code C is prefix-free.

Question 2. Let p, q be distributions over the same sample space \mathcal{X} such that $\operatorname{supp}(p) \subseteq \operatorname{supp}(q)$. Define $\mathrm{M}(p \| q):=\sum_{x \in \mathcal{X}} p_{x} \log \frac{1}{q_{x}}$. We abbreviate $\mathrm{M}(p \| q)$ by m below.
Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. $\sim p$, and let $\boldsymbol{X}:=X_{1} X_{2} \cdots X_{n}$. Fix $\epsilon>0$.
(a) [5 marks] For a sequence $\boldsymbol{x}:=x_{1} x_{2} \cdots x_{n} \in \mathcal{X}^{n}$, define $q_{\boldsymbol{x}}:=q_{x_{1}} q_{x_{2}} \cdots q_{x_{n}}$. Let $S_{n, \epsilon} \subseteq \mathcal{X}^{n}$ be defined as the following set of sequences

$$
S_{n, \epsilon}:=\left\{\boldsymbol{x} \in \mathcal{X}^{n}: 2^{-n(m+\epsilon)} \leq q_{\boldsymbol{x}} \leq 2^{-n(m-\epsilon)}\right\}
$$

Prove that $\operatorname{Pr}\left(\boldsymbol{X} \in S_{n, \epsilon}\right) \rightarrow 1$ as $n \rightarrow \infty$.
(b) [5 marks] Suppose q is our guess for the distribution p (which is not known to us). Explain how we may compress the sequence \boldsymbol{X} (i) losslessly to at most $m+\epsilon$ bits per sample in expectation; and (ii) to at most $m+\epsilon$ bits per sample in the worst case such that a receiver can recover \boldsymbol{X} with probability arbitrarily close to 1 .

Question 3. The two parts of this question are unrelated.
(a) Suppose we define an equivalence relation on random variables X, Y on the same sample space \mathcal{X}, so that $X \equiv Y$ iff there is a bijection f on \mathcal{X} such that $Y=f(X)$. Let $\rho(X, Y)=\mathrm{H}(X \mid Y)+\mathrm{H}(Y \mid X)$. Prove that ρ is a metric on the set of equivalence classes of random variables.
(b) Let X, Y be real-valued random variables, with finite support. Let $Z=X+Y$. State and prove a necessary and sufficient condition for when the entropy of the sum equals the sum of the entropies, i.e., $\mathrm{H}(Z)=\mathrm{H}(X)+\mathrm{H}(Y)$.

Question 4. Let $G:=(A, B, E)$ be an n-regular bi-partite graph with $|A|=|B|=m$. Following the steps below, give an information-theoretic proof of the property that the number of independent sets in G is at $\operatorname{most}\left(2^{n+1}-1\right)^{m / n}$.
Let \boldsymbol{X} denote a uniformly random independent set in G, represented by its characteristic vector. For $v \in$ $A \cup B$, let $\mathrm{N}(v)$ denote the set of neighbours of v in G, and let $Y_{v}:=\mathbb{1}\left(\boldsymbol{X}_{\mathrm{N}(v)}=\mathbf{0}\right)$ the Bernoulli random variable indicating whether $\boldsymbol{X}_{\mathrm{N}(v)}=\mathbf{0}$ or not.
Prove that
(a) $\mathrm{H}\left(\boldsymbol{X}_{B}\right) \leq \frac{1}{n} \sum_{v \in A} \mathrm{H}\left(\boldsymbol{X}_{\mathrm{N}(v)}\right)$;
(b) $\mathrm{H}\left(\boldsymbol{X}_{A} \mid \boldsymbol{X}_{B}\right) \leq \sum_{v \in A} \mathrm{H}\left(X_{v} \mid \boldsymbol{X}_{\mathrm{N}(v)}\right)$; and
(c) $\mathrm{H}\left(\boldsymbol{X}_{\mathrm{N}(v)}\right) \leq \mathrm{H}\left(p_{v}\right)+\left(1-p_{v}\right) \log \left(2^{n}-1\right)$, where $p_{v}:=\operatorname{Pr}\left(Y_{v}=1\right)$.

Conclude the bound on the number of independent sets stated above.

