INTRODUCTION TO NMR and NMR QIP

J. Baugh

Books (NMR):

Spin dynamics: basics of nuclear magnetic resonance, M. H. Levitt, Wiley, 2001.

The principles of nuclear magnetism, A. Abragam, Oxford, 1961.

Principles of magnetic resonance, C. P. Slichter, Springer, 1990.

Reviews (NMR QIP):

NMR techniques for quantum control and computation, LMK Vandersypen and I. Chuang, Reviews of Modern Physics (2004) vol. 76 (4) pp. 1037-1069.

Quantum information processing using nuclear and electron magnetic resonance: review and prospects, J. Baugh et al., 2007. arXiv: 0710.1447.

NMR Based Quantum Information Processing: Achievements and Prospects, D. G. Cory et al., 2000. arXiv:quant-ph/0004104.

What is Spin?

INTRODUCTION TO NMR and NMR QIP

J. Baugh

	Elements Accessible by NMR	Spin-1/2 nucleus	NMR freq (MHz) (at 10 T)	natural abundance
1 10 100 000 21 10 100 21 10 100 21 10 100 21 10 100	element vergen 1 atomic Li=1,2 nuclei number 1,3 IIIA 14 IVA 15 VA 16 VIA 17 VIIA 18 IVA 18 VA 16 VIA 17 VIIA	¹ H	426	99.9%
Limur 3 Begluer 4 Li 11 SATI 752 Meser	isotope	¹³ C	107	1.1%
Mail Mg ID-302 25 400 3 IIIIB	4 EVE 5 VE 6 VE 7 VE 8 VE 9 VE 10 VE 11 11 12 12 EE 12 EE 17 VE 10 VE 11 12 2 EE 17 VE 10 VE 11 12 2 EE 17 VE 10 VE 11 12 12 EE 17 VE 10 VE 11 12 VE 10 VE 11 12 VE 10 V	¹⁵ N	43	0.4%
Presenter 19 K 39 40 4470 39 40 4470 40 10 8.728 40 10 8.728 40 10 9.728 40	Theorem 22 Version 23 Operator 24 More 24	¹⁹ F	401	100%
Radiana 37 Stream 38 Terrar 39 Rb Sr Y	Distribution Name Magnetization Magnetization <td>²⁸Si</td> <td>85</td> <td>4.7%</td>	²⁸ Si	85	4.7%
Cs Ba	1000000000000000000000000000000000000	³¹ P	175	100%
Lation of Lation	Totales 8 Tables 75 Tm Yb 10 Lit # 420 Critic CTRE			

Nuclei with an odd (even) number of nucleons possess half-integer (integer) spin

Nuclei with an even number of protons and neutrons are spinless

INTRODUCTION TO NMR and NMR QIP

J. Baugh

NMR Hamiltonian:

2 coupled spins in liquid-state NMR (e.g. ¹³C-labelled Chloroform)

$$(\hbar = 1) \qquad H_0 = \frac{1}{2} \left(\omega_1 \sigma_{1z} + \omega_2 \sigma_{2z} + \pi J_{12} \sigma_{1z} \sigma_{2z} \right)$$

Chloroform molecule, CHCl_3

Larmor frequency (rad/s): $\omega_k = -\gamma_k B$

External magnetic field (T): B

Coupling strength (Hz): J_{kl}

Chemical shielding:

For the same isotope, $\gamma_j = \gamma_0 (1 - \delta_j)$

for nucleus at the jth chemical site.

Ability to address different nuclei as qubits

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Larmor precession of a single spin

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Eigenstates of the Hamiltonian

$$H_{0} = \frac{1}{2} \left(\omega_{1} \sigma_{1z} + \omega_{2} \sigma_{2z} + \pi J_{12} \sigma_{1z} \sigma_{2z} \right)$$

Chloroform molecule, CHCl_3

State eigenvalue

$$\begin{vmatrix}\uparrow\uparrow\rangle & \frac{1}{2}(\omega_{1}+\omega_{2}+\pi J_{12}) \\
|\downarrow\uparrow\rangle & \frac{1}{2}(-\omega_{1}+\omega_{2}-\pi J_{12}) \\
|\downarrow\downarrow\rangle & \frac{1}{2}(-\omega_{1}-\omega_{2}-\pi J_{12}) \\
|\downarrow\downarrow\rangle & \frac{1}{2}(-\omega_{1}-\omega_{2}+\pi J_{12})
\end{cases}$$

$$\uparrow\uparrow & \frac{1}{2}(-\omega_{1}+\omega_{2}) & -\frac{\pi}{2}J_{12} \\
\uparrow\downarrow & \frac{1}{2}(-\omega_{1}-\omega_{2}) & -\frac{\pi}{2}J_{12} \\
\uparrow\downarrow & \frac{1}{2}(-\omega_{1}-\omega_{2}) & -\frac{\pi}{2}J_{12} \\
\downarrow\downarrow & \frac{1}{2}(-\omega_{1}-\omega_{2}) & -\frac{\pi}{2}J_{12} \\
\downarrow\downarrow & \frac{1}{2}(-\omega_{1}-\omega_{2}) & +\frac{\pi}{2}J_{12} \\
J_{12} \approx 200Hz
\end{cases}$$

These are magnetic dipole transitions, and are thus driven by an oscillating (Radio-frequency, "RF") magnetic field... Need transverse spin operators (σ_x, σ_y) to drive them.

J. Baugh

INTRODUCTION TO NMR and NMR QIP

Rotating reference frame transformation: two isotopes (doubly-rotating frame)

$$R(t) = e^{i\omega_{1rf}t\sigma_{1z}/2}e^{i\omega_{2rf}t\sigma_{2z}/2}$$

$$\begin{aligned} \left|\psi_{R}\right\rangle &= R(t)\left|\psi_{lab}\right\rangle \\ \frac{id\left|\psi_{lab}\right\rangle}{dt} &= H_{lab}\left|\psi_{lab}\right\rangle \longrightarrow \frac{id\left|\psi_{R}\right\rangle}{dt} = H_{R}\left|\psi_{R}\right\rangle \\ H_{lab} &= H_{0} + H_{rf}(t) \qquad H_{R} = \frac{1}{2}\left[\left(\omega_{1} - \omega_{1rf}\right)\sigma_{1z} + \left(\omega_{2} - \omega_{2rf}\right)\sigma_{2z} + \pi J_{12}\sigma_{1z}\sigma_{2z}\right] \\ &+ \frac{1}{2}\left[\Omega_{1}(t)\left(\sigma_{1x}\cos(\phi_{1}) + \sigma_{1y}\sin(\phi_{1})\right)\right] \\ &+ \frac{1}{2}\left[\Omega_{2}(t)\left(\sigma_{2x}\cos(\phi_{2}) + \sigma_{2y}\sin(\phi_{2})\right)\right] \end{aligned}$$

J. Baugh

INTRODUCTION TO NMR and NMR QIP

Rotating frame

We had Larmor precession in Lab frame:

$$U(t)|\psi_{Lab}\rangle = e^{-i\omega_1 t/2} \left(\frac{|\uparrow\rangle + e^{+i\omega_1 t}|\downarrow\rangle}{\sqrt{2}}\right)$$

But in the rotating frame (on resonance):

$$R(t) |\psi_{Lab}(t)\rangle = R(t) (U(t) |\psi_{Lab}\rangle) = \frac{|\uparrow\rangle + |\downarrow\rangle}{\sqrt{2}}$$

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Resonant pulses as Bloch sphere rotations

Consider a single spin at resonance:

$$\omega_{1} = \omega_{1rf}$$

$$H_{R} = \frac{1}{2} \left[\left(\omega_{1} - \omega_{1rf} \right) \sigma_{1z} + \Omega_{1}(t) \left(\sigma_{1x} \cos(\phi_{1}) + \sigma_{1y} \sin(\phi_{1}) \right) \right]$$

$$U(t) = e^{-i\Omega_{1}t \left(\sigma_{1x} \cos(\phi_{1}) + \sigma_{1y} \sin(\phi_{1}) \right)/2}$$

In NMR, we can control both RF phase (ϕ) and amplitude (Ω) in time, so we can perform arbitrary single spin rotations...

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Example of two-qubit logic: the CNOT gate

Zeeman coupling

coupling RF pulses (control)

INTRODUCTION TO NMR and NMR QIP

J. Baugh

The thermal state

A general mixed state:

$$\rho = \sum_{k} a_{k} |\psi_{k}\rangle \langle \psi_{k}|$$

Thermal equilibrium (Boltzmann distribution): $\rho_{th} = \frac{e^{-H_0/kT}}{Tr(e^{-H_0/kT})}$

In the high temperature limit ($|H_0| \ll kT$)

$$\rho_{th} \approx \frac{1}{2} \left(\boldsymbol{I} - \frac{H_0}{kT} \right) \approx \frac{\boldsymbol{I}}{2} - \frac{1}{4kT} \left(\omega_1 \sigma_{1z} + \omega_2 \sigma_{2z} \right) \qquad \text{(two-spin case)}$$

 $\hbar\omega/kT \sim 10^{-5}$ at room temperature in NMR

INTRODUCTION TO NMR and NMR QIP

J. Baugh

The thermal state

 $\rho_{th} \approx \frac{1}{2} \left(\boldsymbol{I} - \frac{H_0}{kT} \right) \approx \frac{\boldsymbol{I}}{2} - \frac{1}{4kT} \left(\omega_1 \sigma_{1z} + \omega_2 \sigma_{2z} \right)$

The identity term cannot be changed by pulses or observed...

So we define a 'deviation' density matrix (note it is not a "proper" density matrix, since $Tr(\rho) \neq 1$)

 $\rho_{dev} = \frac{H_0}{kT} \propto \omega_1 \sigma_{1z} + \omega_2 \sigma_{2z}$

(the J coupling term is $\sim 10^{-6}$ times smaller than Zeeman energy)

 σ_z indicates a population difference between spin-up and spin-down states

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Pseudopure states

To initialize an NMR quantum info. processor, we want a pure state...or at least one that behaves like a pure state:

$$\rho_{pp} = \frac{I}{2} - \alpha |\psi\rangle \langle \psi|$$

Example: making a ${}^{1}H - {}^{13}C$ pseudopure state

$$\rho_{dev} \approx 4\sigma_{1z} + \sigma_{2z} = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix}$$

J. Baugh

INTRODUCTION TO NMR and NMR QIP

Example: making a ${}^{1}H - {}^{13}C$ pseudopure state

Apply three permutation circuits and sum results:

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Measurement in NMR

Bulk magnetization of jth isotope:

$$M_{z}^{j} = \mu_{j} \cdot \left(n_{j\uparrow} - n_{j\downarrow} \right)$$

90 degree ("readout") pulse rotates magnetization to x-y plane:

Ensemble of identical, noninteracting 'processor' molecules

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Measurement in NMR

In the lab frame, magnetization precesses in the x-y plane, at the Larmor frequency...

...the oscillating magnetic flux induces an emf in the solenoid coil via Faraday's law.

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Measurement in NMR

This corresponds to an expectation value measurement, with observables:

$$\left\langle M_{x}\right\rangle = Tr\left(\rho \cdot \sum_{k} \sigma_{x,k}\right) = Tr\left(\rho_{dev} \cdot \sum_{k} \sigma_{x,k}\right)$$
$$\left\langle M_{y}\right\rangle = Tr\left(\rho \cdot \sum_{k} \sigma_{y,k}\right) = Tr\left(\rho_{dev} \cdot \sum_{k} \sigma_{y,k}\right)$$

We call these observables "transverse magnetization"

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Measurement in NMR

Example: 1-qubit tomography of an arbitrary state $ho_{\scriptscriptstyle dev}$

Unfortunately, the # of expts needed grows exponentially with # qubits, regardless of the physical system we use for implementation!

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Measurement in NMR : FT spectrum

"free-induction signal"

$$M_{x}(t) = Tr(\rho(t) \cdot \sigma_{x}) = Tr(e^{-iH_{0}t}\rho(0)e^{+iH_{0}t} \cdot \sigma_{x})$$

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Deutch-Jozsa Algorithm

TABLE II. The four possible binary functions mapping one bit to another.

<i>x</i>	$f_{00}(x)$	$f_{01}(x)$) $f_{10}(x)$	$f_{11}(x)$
0 1	0 0	0 1	1 0	1 1
		'balanced'		
		'constant'		

Quantum circuit to compute binary function f.

$$\begin{split} \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) &\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \stackrel{U_f}{\to} \left(\frac{(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle}{\sqrt{2}}\right) \\ &\times \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) = (-1)^{f(0)} \left(\frac{|0\rangle+(-1)^{f(0)\oplus f(1)}|1\rangle}{\sqrt{2}}\right) \\ &\times \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right), \end{split}$$

NMR results

Jones and Mosca, 1998

Factoring 15...Vandersypen et al, 2001

Current experiments at IQC: 12-qubit NMR QIP

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Relaxation and decoherence

General Kraus operator sum:

$$\rho \rightarrow \sum_{k} A_{k} \rho A_{k}^{+} \qquad \sum_{k} A_{k}^{+} A_{k} = I$$

	Spin operators
Relaxation	σ_x, σ_y
Dephasing	$\sigma_{_{z}}$

Example: pure dephasing

Lorentzian with time-dependent FWHM

$$A = e^{-i\phi\sigma_z} \qquad \qquad \text{Depnas}$$

$$\rho \to \int d\phi \Big(e^{-i\phi\sigma_z} \rho e^{+i\phi\sigma_z} f(\phi, t, T_2) \Big) \to \begin{pmatrix} a & be^{-t/T_2} \\ b^* e^{-t/T_2} & 1-a \end{pmatrix}$$

Dephasing on the Bloch sphere

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Pure dephasing

Or in another form:

With Kraus operators:

$$A_0 = \sqrt{1 - p}\boldsymbol{I}$$

$$A_1 = \sqrt{p\sigma_z}$$
$$p = \frac{1 - e^{-t/T_2}}{2}$$

Dephasing on the Bloch sphere

INTRODUCTION TO NMR and NMR QIP

J. Baugh

Relaxation

$$A_0 = \sqrt{p} \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1 - \eta} \end{pmatrix} \qquad A_2 = \sqrt{1 - p} \begin{pmatrix} \sqrt{1 - \eta} & 0 \\ 0 & 1 \end{pmatrix}$$
$$A_1 = \sqrt{p} \begin{pmatrix} 0 & \sqrt{\eta} \\ 0 & 0 \end{pmatrix} \qquad A_3 = \sqrt{1 - p} \begin{pmatrix} 0 & 0 \\ \sqrt{\eta} & 0 \end{pmatrix}$$

see e.g. Nielsen & Chuang

$$\Lambda(\rho) = \begin{pmatrix} (a - a_0)e^{-t/T_1} + a_0 & be^{-t/2T_1} \\ b^* e^{-t/2T_1} & (a_0 - a)e^{-t/T_1} + (1 - a_0) \end{pmatrix}$$

For pure relaxation, $T_2 = 2T_1$

In liq. state NMR, typically $T_2 \approx 0.5-5 \text{ s}$ $T_1 \approx 5-20 \text{ s}$