ASSIGNMENT 9

Due at the start of class on Wednesday 25 March.

- 1. Given a matrix $A \in M_{n \times n}(\mathbb{C})$, a *polar decomposition* of A is a factorization A = UP, where $U \in M_{n \times n}(\mathbb{C})$ is unitary and $P \in M_{n \times n}(\mathbb{C})$ is positive semidefinite. Such a decomposition always exists (see Theorem 6.28 on page 411).
 - (a) Prove or disprove: A is normal if and only if UP = PU for any polar decomposition A = UP.
 - (b) Give a necessary and sufficient condition for A = UP (a polar decomposition of A) to be self-adjoint.
- 2. Let V, W be finite-dimensional inner product spaces, and let $T \in \mathcal{L}(V, W)$. Prove that $U = T^+$ if and only if TUT = T, UTU = U, and UT and TU are self-adjoint.
- 3. Let V, W be finite-dimensional inner product spaces. We call $T \in \mathcal{L}(V, W)$ an *isometry* if ||T(x)|| = ||x|| for all $x \in V$.
 - (a) Show that $T^*T \in \mathcal{L}(V)$ is the identity transformation. What is TT^* ?
 - (b) Show that $T^+ = T^*$.
- 4. In class, we saw that the least-squares fit to data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \in \mathbb{R}^2$ by a line of the form y = mx + b is given by

$$\binom{m}{b} = A^+ \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \text{where} \quad A := \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}.$$

- (a) Compute the singular value decomposition of the matrix A.
- (b) Give closed-form expressions for m and b. (You may assume that the data points are not all collinear, since in that case the fit would be trivial.)
- (c) In the course of an experiment, you collect the following data:

x	y
1	-1.3
2	-0.1
3	4.8
4	5.7
5	11.5

Find a linear least-squares fit to your data, and plot the results.