ASSIGNMENT 8

Due at the start of class on Wednesday 18 March.

1. Let V be a finite-dimensional inner product space over \mathbb{C}, and let $\mathrm{T} \in \mathcal{L}(\mathrm{V})$ be a normal linear transformation with spectral decompostion $\mathrm{T}=\sum_{j=1}^{k} \lambda_{j} \mathrm{P}_{j}$, where the P_{j} are orthogonal projections.
(a) Show that if $f \in \mathbb{C}[x]$ is a polynomial, then $f(T)=\sum_{j=1}^{k} f\left(\lambda_{j}\right) \mathrm{P}_{j}$.
(b) Define $e^{\top}:=\sum_{j=0}^{\infty} \mathrm{T}^{j} / j$!. Show that $e^{\top}=\sum_{j=0}^{k} e^{\lambda_{j}} \mathrm{P}_{j}$.
(c) More generally, we can define other functions of T in terms of its spectral decomposition. Given $g: \mathbb{C} \rightarrow \mathbb{C}$ (not necessarily a polynomial, or even a function with a Taylor series), let $g(\mathrm{~T}):=\sum_{j=1}^{k} g\left(\lambda_{j}\right) \mathrm{P}_{j}$. Show that $\sqrt{\mathrm{T}^{*} \mathrm{~T}}=\sqrt{\mathrm{TT}^{*}}=|\mathrm{T}|$, where $|\cdot|$ denotes the modulus function.
2. Let $B \in \mathrm{M}_{3 \times 3}(\mathbb{C})$ denote the matrix

$$
B:=\left(\begin{array}{lll}
x & y & y \\
y & x & y \\
y & y & x
\end{array}\right)
$$

(a) Find orthogonal projection matrices P_{1}, \ldots, P_{k} such that $B=\sum_{j=1}^{k} \lambda_{j} P_{j}$, where $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct eigenvalues of B.
(b) Find a matrix $A \in \mathrm{M}_{3 \times 3}(\mathbb{C})$ such that $A^{2}=B$.
3. Compute the singular value decompositions of the following matrices:

$$
A:=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad B:=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right), \quad C:=\left(\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

4. Let V, W be finite-dimensional inner product spaces over \mathbb{C}. Prove that for any $x \in \mathrm{~V} \otimes \mathrm{~W}$, there exist orthonormal bases $\left\{v_{1}, \ldots, v_{\operatorname{dim}} \mathrm{V}\right\}$ for V and $\left\{w_{1}, \ldots, w_{\operatorname{dim}} \mathrm{W}\right\}$ for W and scalars $a_{1}, \ldots, a_{n} \in \mathbb{C}($ where $n \leq \min (\operatorname{dim} \mathrm{V}, \operatorname{dim} \mathrm{W}))$ such that $x=\sum_{j=1}^{n} a_{j} v_{j} \otimes w_{j}$. (This is called a Schmidt decomposition of x.)
5. Let $A \in \mathrm{M}_{n \times n}(\mathbb{C})$. Let $\sigma(A)$ denote the largest singular value of A, and let

$$
\rho(A):=\max \{|\lambda|: \lambda \text { is an eigenvalue of } A\}
$$

(a) Prove that $\max _{x} \frac{\|A x\|}{\|x\|}=\sigma(A)$, where the maximum is over all nonzero $x \in \mathrm{M}_{n \times 1}(\mathbb{C})$.
(b) Prove or disprove: $\sigma(A) \leq \rho(A), \sigma(A) \geq \rho(A)$.
(c) A function $\nu: \mathrm{M}_{n \times n}(\mathbb{C}) \rightarrow \mathbb{R}$ is called a matrix norm if it satisfies three axioms: $\nu(A) \geq 0$ for all $A \in \mathrm{M}_{n \times n}(\mathbb{C})$, with equality only when A is the zero matrix; $\nu(c A)=|c| \nu(A)$ for all $c \in \mathbb{C}$ and all $A \in \mathrm{M}_{n \times n}(\mathbb{C})$; and $\nu(A+B) \leq \nu(A)+\nu(B)$ for all $A, B \in \mathrm{M}_{n \times n}(\mathbb{C})$. Is σ a matrix norm? How about ρ ?

