ASSIGNMENT 8

Due at the start of class on Wednesday 18 March.

- 1. Let V be a finite-dimensional inner product space over \mathbb{C} , and let $\mathsf{T} \in \mathcal{L}(\mathsf{V})$ be a normal linear transformation with spectral decomposition $\mathsf{T} = \sum_{j=1}^{k} \lambda_j \mathsf{P}_j$, where the P_j are orthogonal projections.
 - (a) Show that if $f \in \mathbb{C}[x]$ is a polynomial, then $f(\mathsf{T}) = \sum_{j=1}^{k} f(\lambda_j) \mathsf{P}_j$.
 - (b) Define $e^{\mathsf{T}} := \sum_{j=0}^{\infty} \mathsf{T}^j / j!$. Show that $e^{\mathsf{T}} = \sum_{j=0}^k e^{\lambda_j} \mathsf{P}_j$.
 - (c) More generally, we can define other functions of T in terms of its spectral decomposition. Given $g : \mathbb{C} \to \mathbb{C}$ (not necessarily a polynomial, or even a function with a Taylor series), let $g(\mathsf{T}) := \sum_{j=1}^{k} g(\lambda_j) \mathsf{P}_j$. Show that $\sqrt{\mathsf{T}^*\mathsf{T}} = \sqrt{\mathsf{T}\mathsf{T}^*} = |\mathsf{T}|$, where $|\cdot|$ denotes the modulus function.
- 2. Let $B \in M_{3\times 3}(\mathbb{C})$ denote the matrix

$$B := \begin{pmatrix} x & y & y \\ y & x & y \\ y & y & x \end{pmatrix}$$

- (a) Find orthogonal projection matrices P_1, \ldots, P_k such that $B = \sum_{j=1}^k \lambda_j P_j$, where $\lambda_1, \ldots, \lambda_k$ are the distinct eigenvalues of B.
- (b) Find a matrix $A \in M_{3\times 3}(\mathbb{C})$ such that $A^2 = B$.
- 3. Compute the singular value decompositions of the following matrices:

$$A := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad B := \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \qquad C := \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

- 4. Let V, W be finite-dimensional inner product spaces over \mathbb{C} . Prove that for any $x \in V \otimes W$, there exist orthonormal bases $\{v_1, \ldots, v_{\dim V}\}$ for V and $\{w_1, \ldots, w_{\dim W}\}$ for W and scalars $a_1, \ldots, a_n \in \mathbb{C}$ (where $n \leq \min(\dim V, \dim W)$) such that $x = \sum_{j=1}^n a_j v_j \otimes w_j$. (This is called a *Schmidt decomposition* of x.)
- 5. Let $A \in \mathsf{M}_{n \times n}(\mathbb{C})$. Let $\sigma(A)$ denote the largest singular value of A, and let

$$\rho(A) := \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}.$$

- (a) Prove that $\max_{x} \frac{\|Ax\|}{\|x\|} = \sigma(A)$, where the maximum is over all nonzero $x \in \mathsf{M}_{n \times 1}(\mathbb{C})$.
- (b) Prove or disprove: $\sigma(A) \leq \rho(A), \ \sigma(A) \geq \rho(A).$
- (c) A function $\nu : \mathsf{M}_{n \times n}(\mathbb{C}) \to \mathbb{R}$ is called a *matrix norm* if it satisfies three axioms: $\nu(A) \ge 0$ for all $A \in \mathsf{M}_{n \times n}(\mathbb{C})$, with equality only when A is the zero matrix; $\nu(cA) = |c|\nu(A)$ for all $c \in \mathbb{C}$ and all $A \in \mathsf{M}_{n \times n}(\mathbb{C})$; and $\nu(A + B) \le \nu(A) + \nu(B)$ for all $A, B \in \mathsf{M}_{n \times n}(\mathbb{C})$. Is σ a matrix norm? How about ρ ?