ASSIGNMENT 7

Math 245 (Winter 2009)
Due at the start of class on Wednesday 11 March.

1. Let V be an n-dimensional inner product space over \mathbb{F}, and let $\mathrm{T} \in \mathcal{L}(\mathrm{V})$ be self-adjoint. We call T positive semidefinite if it satisfies $\langle\mathrm{T}(x), x\rangle \geq 0$ for all $x \in \mathrm{~V}$. Prove that the following are equivalent:
(i) T is positive semidefinite.
(ii) The eigenvalues of T are non-negative.
(iii) There exists a $U \in \mathcal{L}(V)$ such that $T=U^{*} U$.
(Of course, we can make similar statements about matrices. If $A \in \mathrm{M}_{n \times n}(\mathbb{F})$ satisfies $A=A^{*}$, then we call A positive semidefinite if $x^{*} A x \geq 0$ for all $x \in \mathrm{M}_{n \times 1}(\mathbb{F})$. While you are not asked to include the proof with your assignment, you are encouraged to convince yourself that A is positive semidefinite if and only if its eigenvalues are non-negative, if and only if there is a $B \in \mathrm{M}_{n \times n}(\mathbb{F})$ such that $A=B^{*} B$, if and only if L_{A} is positive semidefinite.)
2. The set of solutions $(x, y, z) \in \mathbb{R}^{3}$ to an equation of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

is called an ellipsoid. The volume of this ellipsoid is $\frac{4 \pi}{3} a b c$. The set of solutions to the equation

$$
4\left(x^{2}+y^{2}+z^{2}\right)+2(x y+x z+y z)=1
$$

is also an ellipsoid. What is its volume? (Hint: You can make use of your solution to question 5 on assignment 6.)
3. Let n be a positive integer, and let $\omega:=e^{2 \pi i / n}$. The matrix

$$
F:=\frac{1}{\sqrt{n}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right) \in \mathrm{M}_{n \times n}(\mathbb{C})
$$

is called the discrete Fourier transform modulo n.
(a) Show that F is unitary.
(b) Recall from assignment 4 that a matrix of the form

$$
C:=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & a_{2} & & a_{n-2} \\
a_{n-2} & a_{n-1} & a_{0} & a_{1} & \ddots & \vdots \\
\vdots & a_{n-2} & a_{n-1} & \ddots & \ddots & a_{2} \\
a_{2} & & \ddots & \ddots & a_{0} & a_{1} \\
a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} & a_{0}
\end{array}\right) \in \mathrm{M}_{n \times n}(\mathbb{C})
$$

is called a circulant matrix. Show that if C is a circulant matrix, then $F^{*} C F$ is diagonal.
(c) Prove that if λ is an eigenvalue of F, then $\lambda \in\{1,-1, i,-i\}$.
4. Recall that if $A \in \mathrm{M}_{n \times n}(\mathbb{C})$, the exponential of A is defined as the matrix $e^{A}:=\sum_{j=0}^{\infty} A^{j} / j!$.
(a) Prove that if $A \in \mathrm{M}_{n \times n}(\mathbb{C})$ is Hermitian, then $e^{i A}$ is unitary.
(b) Prove that if $U \in \mathrm{M}_{n \times n}(\mathbb{C})$ is unitary, then there exists a Hermitian matrix A such that $U=e^{i A}$. Is A unique?
5. For any $\theta \in \mathbb{R}$, let

$$
P_{\theta}:=\left(\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right) .
$$

(a) Show that P_{θ} is an orthogonal projection matrix.
(b) Let $\theta \in(0, \pi)$. Compute $\lim _{n \rightarrow \infty}\left(P_{n \theta} \cdots P_{2 \theta} P_{\theta}\right)$.
(c) Compute $\lim _{n \rightarrow \infty}\left(P_{\theta} \cdots P_{2 \theta / n} P_{\theta / n}\right)$ and compare your result with the previous part.
6. (Bonus question) If $\mathcal{E} \in \mathcal{L}(\mathcal{L}(\mathrm{V}))$ for some vector space V , then \mathcal{E} is called a superoperator. In this problem, let $\mathrm{V}=\mathbb{C}^{n}$. By a slight abuse of notation, we will identify a linear transformation $\mathrm{T} \in \mathcal{L}(\mathrm{V})$ with its matrix $[\mathrm{T}]_{\beta} \in \mathrm{M}_{n \times n}(\mathbb{C})$ in a fixed orthonormal basis β, and thus we will call $\mathcal{E} \in \mathcal{L}\left(\mathrm{M}_{n \times n}(\mathbb{C})\right)$ a superoperator.
(a) A superoperator \mathcal{E} is called positive if, for all positive semidefinite matrices $A \in \mathrm{M}_{n \times n}(\mathbb{C})$, $\mathcal{E}(A)$ is positive semidefinite. Define $\mathcal{T}: \mathrm{M}_{n \times n}(\mathbb{C}) \rightarrow \mathrm{M}_{n \times n}(\mathbb{C})$ by $\mathcal{T}(A)=A^{t}$. Show that \mathcal{T} is a positive superoperator.
(b) A superoperator \mathcal{E} is called completely positive if, for all positive integers m and all positive semidefinite matrices $A \in \mathrm{M}_{n m \times n m}(\mathbb{C}),(\mathcal{E} \otimes \mathcal{I})(A)$ is positive semidefinite, where \mathcal{I} denotes the identity superoperator on $\mathrm{M}_{m \times m}(\mathbb{C})$. Show that \mathcal{T} is not completely positive.
(c) Given a set of matrices $E_{1}, \ldots, E_{k} \in \mathrm{M}_{n \times n}(\mathbb{C})$, we call

$$
\mathcal{E}(A)=\sum_{i=1}^{k} E_{i} A E_{i}^{*}
$$

a Kraus representation for $\mathcal{E}: \mathrm{M}_{n \times n}(\mathbb{C}) \rightarrow \mathrm{M}_{n \times n}(\mathbb{C})$. Show that any \mathcal{E} with a Kraus representation is a completely positive superoperator.
(d) Prove the Kraus Representation Theorem: if \mathcal{E} is a completely positive superoperator, then it has a Kraus representation.

