ASSIGNMENT 6

Due at the start of class on Wednesday 4 March.

1. Let V be a vector space, and let S be a subset of V . The annihilator of S is

$$
S^{0}:=\left\{f \in \mathrm{~V}^{*}: f(s)=0 \text { for all } s \in S\right\} .
$$

(a) Prove that S^{0} is a subspace of V^{*}.
(b) Prove that $S^{0}=\operatorname{span}(S)^{0}$.
(c) Suppose V is finite-dimensional, and W is a subspace of V . What is $\operatorname{dim}\left(\mathrm{W}^{0}\right)$?
(d) Suppose W is a subspace of V. Prove that W^{*} is naturally isomorphic to V^{*} / W^{0}.
2. Let $\mathrm{T} \in \mathcal{L}(\mathrm{V}, \mathrm{W})$, where V is a finite-dimensional vector space with inner product $\langle\cdot, \cdot\rangle_{\mathrm{V}}$ and W is a finite-dimensional vector space with inner product $\langle\cdot, \cdot\rangle_{\mathrm{W}}$. We call $\mathrm{T}^{*} \in \mathcal{L}(\mathrm{~W}, \mathrm{~V})$ an adjoint of T provided $\langle\mathrm{T}(v), w\rangle_{\mathrm{W}}=\left\langle v, \mathrm{~T}^{*}(w)\right\rangle_{\mathrm{V}}$ for all $v \in \mathrm{~V}$ and all $w \in \mathrm{~W}$. Prove the following:
(a) T^{*} exists and is unique.
(b) If β is an orthonormal basis for V and γ is an orthonormal basis for W , then $\left[\mathrm{T}^{*}\right]_{\gamma}^{\beta}=\left([\mathrm{T}]_{\beta}^{\gamma}\right)^{*}$.
(c) $\operatorname{rank}\left(T^{*}\right)=\operatorname{rank}(T)$.
(d) $\left\langle\mathrm{T}^{*}(w), v\right\rangle_{\mathrm{V}}=\langle w, \mathrm{~T}(v)\rangle_{\mathrm{W}}$ for all $v \in \mathrm{~V}$ and all $w \in \mathrm{~W}$.
3. (a) Let V, W be finite-dimensional inner product spaces, and let $\mathrm{T} \in \mathcal{L}(\mathrm{V}, \mathrm{W})$. Prove that $\mathrm{N}\left(\mathrm{T}^{*} \mathrm{~T}\right)=\mathrm{N}(\mathrm{T})$.
(b) Let $A \in \mathrm{M}_{n \times m}(\mathbb{F})$, where $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. Deduce from part (a) that $\operatorname{rank}\left(A^{*} A\right)=\operatorname{rank}(A)$.
(c) Let $\langle\cdot, \cdot\rangle$ be an inner product over \mathbb{F}^{n}. The Gram matrix of a set of vectors $v_{1}, v_{2}, \ldots, v_{m} \in$ \mathbb{F}^{n} is the matrix $\Gamma \in \mathrm{M}_{m \times m}(\mathbb{F})$ with entries $\Gamma_{j k}=\left\langle v_{j}, v_{k}\right\rangle$. Prove that $\operatorname{rank}(\Gamma)=$ $\operatorname{dim}\left(\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\right)$.
4. Let \vee be an inner product space over \mathbb{C}.
(a) Let $\mathrm{T} \in \mathcal{L}(\mathrm{V})$ be normal. Let $p \in \mathbb{C}[x]$ be a polynomial with complex coefficients. Prove that $p(\mathrm{~T})$ is normal.
(b) Let $\mathrm{U} \in \mathcal{L}(\mathrm{V})$ be self-adjoint. Let $q \in \mathbb{R}[x]$ be a polynomial with real coefficients. Prove that $q(\mathrm{U})$ is self-adjoint.
(c) Does (b) remain true if q has complex coefficients?
5. Let $x, y \in \mathbb{C}$, and let $B \in \mathrm{M}_{3 \times 3}(\mathbb{C})$ be the matrix

$$
B:=\left(\begin{array}{lll}
x & y & y \\
y & x & y \\
y & y & x
\end{array}\right) \text {. }
$$

(a) Show that B is normal.
(b) Compute the eigenvalues of B, and find an orthonormal basis of eigenvectors.

