ASSIGNMENT 4

Due at the start of class on Wednesday 4 February.

1. Let $\mathrm{T}_{1} \in \mathcal{L}\left(\mathrm{~V}_{1}\right)$ and $\mathrm{T}_{2} \in\left(\mathrm{~V}_{2}\right)$, where $\mathrm{V}_{1}, \mathrm{~V}_{2}$ are vector spaces over a field \mathbb{F}. The spectrum of a linear transformation T is $\operatorname{spec}(T):=\{\lambda \in \mathbb{F}: \lambda$ is an eigenvalue of T$\}$.
(a) Prove that if $\lambda \in \operatorname{spec}\left(T_{1}\right)$ or $\lambda \in \operatorname{spec}\left(T_{2}\right)$, then $\lambda \in \operatorname{spec}\left(T_{1} \oplus T_{2}\right)$.
(b) Prove or disprove: $\operatorname{spec}\left(\mathrm{T}_{1} \oplus \mathrm{~T}_{2}\right)=\operatorname{spec}\left(\mathrm{T}_{1}\right) \cup \operatorname{spec}\left(\mathrm{T}_{2}\right)$.
(c) Prove that if $\lambda_{1} \in \operatorname{spec}\left(T_{1}\right)$ and $\lambda_{2} \in \operatorname{spec}\left(T_{2}\right)$, then $\lambda_{1} \lambda_{2} \in \operatorname{spec}\left(T_{1} \otimes T_{2}\right)$.
(d) Prove or disprove: $\operatorname{spec}\left(\mathrm{T}_{1} \otimes \mathrm{~T}_{2}\right)=\left\{\lambda_{1} \lambda_{2}: \lambda_{1} \in \operatorname{spec}\left(\mathrm{~T}_{1}\right)\right.$ and $\left.\lambda_{2} \in \operatorname{spec}\left(\mathrm{~T}_{2}\right)\right\}$.
2. Compute the eigenvalues and corresponding eigenspaces of the following matrices:

$$
A=\left(\begin{array}{ccc}
2 & 2 & -1 \\
-1 & -1 & 1 \\
-2 & -4 & 3
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 2 & 0 \\
8 & 25 & -16 \\
14 & 43 & -27
\end{array}\right)
$$

3. In this problem, all matrices are from $\mathrm{M}_{n \times n}(\mathbb{C})$ with $n \geq 2$.
(a) Compute the characteristic polynomial of

$$
C_{n}:=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & & 0 \\
0 & 0 & 0 & 1 & \ddots & \vdots \\
\vdots & 0 & 0 & \ddots & \ddots & 0 \\
0 & & \ddots & \ddots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 & 0
\end{array}\right)
$$

(b) What are the eigenvalues of C_{n} ?
(c) Compute the eigenvalues of

$$
\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & a_{2} & & a_{n-2} \\
a_{n-2} & a_{n-1} & a_{0} & a_{1} & \ddots & \vdots \\
\vdots & a_{n-2} & a_{n-1} & \ddots & \ddots & a_{2} \\
a_{2} & & \ddots & \ddots & a_{0} & a_{1} \\
a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} & a_{0}
\end{array}\right)
$$

for arbitrary $a_{0}, \ldots, a_{n-1} \in \mathbb{C}$. (Such a matrix is called a circulant matrix.)
4. Let V be a finite-dimensional vector space over a field \mathbb{F}. We say that $\mathrm{T}, \mathrm{U} \in \mathcal{L}(\mathrm{V})$ are simultaneously diagonalizable when there is a single basis β of V such that $[\mathrm{T}]_{\beta},[\mathrm{U}]_{\beta}$ are both diagonal. We say that T, U commute when $\mathrm{TU}=\mathrm{UT}$.
(a) Prove that if T, U are simultaneously diagonalizable, then they commute.
(b) Prove that if T, U commute and each is diagonalizable, then T, U are simultaneously diagonalizable.
(c) Show that the matrices

$$
A=\left(\begin{array}{ccc}
2 & 2 & -1 \\
-1 & -1 & 1 \\
-2 & -4 & 3
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & -2 & 2
\end{array}\right)
$$

commute, and find an invertible matrix S such that $S^{-1} A S, S^{-1} D S$ are both diagonal.
5. An adjacency matrix is a square, symmetric zero-one matrix with all diagonal entries equal to 0. A permutation matrix is a square zero-one matrix with exactly one 1 in each row and in each column. Two adjacency matrices A_{1}, A_{2} are said to be isomorphic when there exists some permutation matrix P such that $A_{2}=P^{t} A_{1} P$.
(a) Prove that if A_{1} and A_{2} are isomorphic, then $\operatorname{spec}\left(A_{1}\right)=\operatorname{spec}\left(A_{2}\right)$ (i.e., they have the same eigenvalues).
(b) Prove or disprove the converse of (a).

