ASSIGNMENT 3

Due at the start of class on Wednesday 28 January.

1. The *permanent* of $A \in \mathsf{M}_{n \times n}(\mathbb{F})$ is defined as

$$\operatorname{per}(A) := \sum_{j=1}^{n} A_{1j} \operatorname{per}(\tilde{A}_{1j}),$$

where A_{ij} denotes the matrix obtained by deleting row *i* and column *j* from *A*, and where the permanent of a scalar is that scalar.

- (a) Prove that the permanent is row-multilinear.
- (b) Show that

$$per(A) = \sum_{j=1}^{n} A_{ij} per(\tilde{A}_{ij})$$

for any $i \in \{1, 2, ..., n\}$.

- (c) Show that if B is obtained by interchanging two rows of A, then per(B) = per(A).
- (d) Suppose B is obtained by adding a scalar multiple of one row of A to another row of A. Can we conclude that per(B) = per(A)?

2. Let $A, B, C, D \in \mathsf{M}_{n \times n}(\mathbb{F})$.

(a) Show that if any one of A, B, C, D is the zero matrix, then

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC). \tag{(\star)}$$

- (b) Show that if C and D commute (i.e., if CD = DC), and if C is invertible, then (\star) holds.
- (c) Does (\star) hold for general A, B, C, D?
- 3. A matrix $\Pi \in \mathsf{M}_{n \times n}(\mathbb{R})$ is called a *projection matrix* if $\Pi^2 = \Pi$. A matrix $R \in \mathsf{M}_{n \times n}(\mathbb{R})$ is called a *reflection matrix* if $R = I 2\Pi$ for some projection matrix Π , where I denotes the $n \times n$ identity matrix.
 - (a) Show that if R is a reflection matrix, then $det(R) = \pm 1$.
 - (b) Let $v \in \mathsf{M}_{n \times 1}(\mathbb{R})$ satisfy $v \cdot v = 1$. Show that vv^t is a projection matrix (and hence that $I 2vv^t$ is a reflection matrix).
 - (c) Let v be as in part (b). Show that $det(I 2vv^t) = -1$.
 - (d) Suppose $v, w \in \mathsf{M}_{n \times 1}(R)$ satisfy $v \cdot v = w \cdot w = 1$ and $v \cdot w = 0$. What is $\det(I 2vv^t 2ww^t)$?
- 4. The trace of a matrix $A \in M_{n \times n}(\mathbb{C})$, denoted $\operatorname{tr}(A)$, is defined as the sum of its diagonal entries. The exponential of A is defined as the power series

$$e^A := \sum_{j=0}^{\infty} \frac{A^j}{j!}.$$

(a) Show that if $U \in \mathsf{M}_{n \times n}(\mathbb{C})$ is an upper triangular matrix, then $\det(e^U) = e^{\operatorname{tr}(U)}$.

- (b) Let $A, B \in \mathsf{M}_{n \times n}(\mathbb{C})$. Prove that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, and deduce that $\operatorname{tr}(A) = \operatorname{tr}(PAP^{-1})$ for any invertible matrix $P \in \mathsf{M}_{n \times n}(\mathbb{C})$.
- (c) Show that if A is similar to an upper triangular matrix (i.e., if there exists an invertible matrix P such that $A = PUP^{-1}$ for some upper triangular matrix U), then $\det(e^A) = e^{\operatorname{tr}(A)}$.

(In fact, the identity $\det(e^A) = e^{\operatorname{tr}(A)}$ holds for any matrix $A \in \mathsf{M}_{n \times n}(\mathbb{C})$, since it can be shown that any complex matrix is similar to some upper triangular matrix.)