ASSIGNMENT 10

Due at the start of class on Wednesday 1 April.

- 1. In class, we analyzed a quantum Markov chain that searches for a single needle in a quantum haystack containing one needle and n-1 pieces of hay. In this problem, you will consider the case where the quantum haystack contains k needles and n-k pieces of hay.
 - (a) Construct a quantum Markov chain that describes the search, defined by a unitary matrix $U \in \mathsf{M}_{n \times n}(\mathbb{C})$. Your initial state should be $u \in \mathbb{C}^n$, where $u_i = 1/\sqrt{n}$ for all $i \in \{1, \ldots, n\}$.
 - (b) Let $v \in \mathbb{C}^n$ be the quantum state with $v_i = 1/\sqrt{k}$ if state *i* represents a needle and $v_i = 0$ otherwise. Show that $W := \operatorname{span}\{u, v\}$ is a *U*-invariant subspace of \mathbb{C}^n , and construct an orthonormal basis for it.
 - (c) Compute $U^m u$, where m is a positive integer. How should one choose m so that $|\langle U^m u, v \rangle|^2$ is close to 1?
- 2. Let $U \in M_{n \times n}(\mathbb{C})$ be a unitary matrix. Recall that if $U \neq I$, then $\lim_{m \to \infty} U^m$ does not exist, so U does not have a unique limiting distribution. Nevertheless, in this problem we explore one way of defining a sensible notion of the limiting distribution of a quantum Markov chain.
 - (a) Define the *limiting distribution* of the quantum Markov chain with initial state $v \in \mathbb{C}^n$ and unitary transition matrix $U \in \mathsf{M}_{n \times n}(\mathbb{C})$ to be the vector $p \in \mathbb{R}^n$ defined by

$$p_j := \lim_{M \to \infty} \frac{1}{M} \sum_{m=0}^{M-1} |(U^m v)_j|^2$$

(You can think of this as running the quantum Markov chain for m steps, where m is chosen randomly between 0 and M - 1, and then making a measurement.) Show that this limit always exists, and that p is a probability vector. In particular, give an expression for p in terms of v and the spectral decomposition of U.

- (b) Recall that if A is a regular stochastic matrix, then $\lim_{m\to\infty} A^m$ exists and has all columns identical, so that the corresponding Markov chain has a unique limiting distribution $A^m w$ that is independent of the initial probability vector w. Is the limiting distribution of a quantum Markov chain, as defined in part (a), independent of the initial quantum state v?
- 3. Let V be a finite-dimensional inner product space, and let $P, Q \in \mathcal{L}(V)$ be orthogonal projections.
 - (a) Let $v \in V$ be an eigenvector of P + Q. Show that the P-cyclic subspace generated by v is Q-invariant.
 - (b) Prove Jordan's Lemma, which states that $V = \bigoplus_i W_i$ for some subspaces W_i of V, where $\dim(W_i) \leq 2$, and each W_i is both P-invariant and Q-invariant.
 - (c) Conclude that each W_i is (I 2Q)(I 2P)-invariant (i.e., is an invariant subspace of the product of reflections about the subspaces P and Q project onto).
- 4. Recall that the *minimal polynomial* of a matrix $A \in M_{n \times n}(\mathbb{C})$ is the unique monic polynomial $p \in \mathbb{C}[x]$ of lowest degree such that p(A) is the zero matrix.

(a) Compute the minimal polynomial of the matrix

$$A_{\lambda,n} := \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda & 1 \\ 0 & \cdots & 0 & 0 & \lambda \end{pmatrix} \in \mathsf{M}_{n \times n}(\mathbb{C}).$$

(b) What is the minimial polynomial of $A_{\lambda,n} \oplus A_{\mu,m}$?