ASSIGNMENT 10

Due at the start of class on Wednesday 1 April.

1. In class, we analyzed a quantum Markov chain that searches for a single needle in a quantum haystack containing one needle and $n-1$ pieces of hay. In this problem, you will consider the case where the quantum haystack contains k needles and $n-k$ pieces of hay.
(a) Construct a quantum Markov chain that describes the search, defined by a unitary matrix $U \in \mathrm{M}_{n \times n}(\mathbb{C})$. Your initial state should be $u \in \mathbb{C}^{n}$, where $u_{i}=1 / \sqrt{n}$ for all $i \in\{1, \ldots, n\}$.
(b) Let $v \in \mathbb{C}^{n}$ be the quantum state with $v_{i}=1 / \sqrt{k}$ if state i represents a needle and $v_{i}=0$ otherwise. Show that $W:=\operatorname{span}\{u, v\}$ is a U-invariant subspace of \mathbb{C}^{n}, and construct an orthonormal basis for it.
(c) Compute $U^{m} u$, where m is a positive integer. How should one choose m so that $\left|\left\langle U^{m} u, v\right\rangle\right|^{2}$ is close to 1 ?
2. Let $U \in \mathrm{M}_{n \times n}(\mathbb{C})$ be a unitary matrix. Recall that if $U \neq I$, then $\lim _{m \rightarrow \infty} U^{m}$ does not exist, so U does not have a unique limiting distribution. Nevertheless, in this problem we explore one way of defining a sensible notion of the limiting distribution of a quantum Markov chain.
(a) Define the limiting distribution of the quantum Markov chain with initial state $v \in \mathbb{C}^{n}$ and unitary transition matrix $U \in \mathrm{M}_{n \times n}(\mathbb{C})$ to be the vector $p \in \mathbb{R}^{n}$ defined by

$$
p_{j}:=\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{m=0}^{M-1}\left|\left(U^{m} v\right)_{j}\right|^{2} .
$$

(You can think of this as running the quantum Markov chain for m steps, where m is chosen randomly between 0 and $M-1$, and then making a measurement.) Show that this limit always exists, and that p is a probability vector. In particular, give an expression for p in terms of v and the spectral decomposition of U.
(b) Recall that if A is a regular stochastic matrix, then $\lim _{m \rightarrow \infty} A^{m}$ exists and has all columns identical, so that the corresponding Markov chain has a unique limiting distribution $A^{m} w$ that is independent of the initial probability vector w. Is the limiting distribution of a quantum Markov chain, as defined in part (a), independent of the initial quantum state v ?
3. Let V be a finite-dimensional inner product space, and let $\mathrm{P}, \mathrm{Q} \in \mathcal{L}(\mathrm{V})$ be orthogonal projections.
(a) Let $v \in \mathrm{~V}$ be an eigenvector of $\mathrm{P}+\mathbf{Q}$. Show that the P -cyclic subspace generated by v is Q-invariant.
(b) Prove Jordan's Lemma, which states that $\mathrm{V}=\bigoplus_{i} \mathrm{~W}_{i}$ for some subspaces W_{i} of V , where $\operatorname{dim}\left(\mathrm{W}_{i}\right) \leq 2$, and each W_{i} is both P-invariant and Q-invariant.
(c) Conclude that each W_{i} is $(I-2 Q)(I-2 P)$-invariant (i.e., is an invariant subspace of the product of reflections about the subspaces P and Q project onto).
4. Recall that the minimal polynomial of a matrix $A \in \mathrm{M}_{n \times n}(\mathbb{C})$ is the unique monic polynomial $p \in \mathbb{C}[x]$ of lowest degree such that $p(A)$ is the zero matrix.
(a) Compute the minimal polynomial of the matrix

$$
A_{\lambda, n}:=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \lambda & 1 \\
0 & \cdots & 0 & 0 & \lambda
\end{array}\right) \in \mathrm{M}_{n \times n}(\mathbb{C})
$$

(b) What is the minimial polynomial of $A_{\lambda, n} \oplus A_{\mu, m}$?

