ASSIGNMENT 10 Math 245 (Winter 2009)
Due at the start of class on Wednesday 1 April.

1. In class, we analyzed a quantum Markov chain that searches for a single needle in a quantum
haystack containing one needle and n — 1 pieces of hay. In this problem, you will consider the
case where the quantum haystack contains k needles and n — k pieces of hay.

(a) Construct a quantum Markov chain that describes the search, defined by a unitary matrix
U € My, (C). Your initial state should be v € C", where u; = 1/y/n for alli € {1,...,n}.

(b) Let v € C" be the quantum state with v; = 1/v/k if state i represents a needle and v; = 0
otherwise. Show that W := span{u,v} is a U-invariant subspace of C", and construct an
orthonormal basis for it.

(c) Compute U™u, where m is a positive integer. How should one choose m so that |(U™u, v)|?

is close to 17

2. Let U € My, (C) be a unitary matrix. Recall that if U # I, then lim,, o, U™ does not exist,
so U does not have a unique limiting distribution. Nevertheless, in this problem we explore one
way of defining a sensible notion of the limiting distribution of a quantum Markov chain.

(a) Define the limiting distribution of the quantum Markov chain with initial state v € C™ and
unitary transition matrix U € M,,x,,(C) to be the vector p € R™ defined by

| M-l
= lim — U™v); %
pi= Jim ST (U);
m=0

(You can think of this as running the quantum Markov chain for m steps, where m is chosen
randomly between 0 and M — 1, and then making a measurement.) Show that this limit
always exists, and that p is a probability vector. In particular, give an expression for p in
terms of v and the spectral decomposition of U.

(b) Recall that if A is a regular stochastic matrix, then lim,, ,,, A™ exists and has all columns
identical, so that the corresponding Markov chain has a unique limiting distribution A™w
that is independent of the initial probability vector w. Is the limiting distribution of a
quantum Markov chain, as defined in part (a), independent of the initial quantum state v?

3. Let V be a finite-dimensional inner product space, and let P, Q € £(V) be orthogonal projections.
(a) Let v € V be an eigenvector of P + Q. Show that the P-cyclic subspace generated by v is

Q-invariant.

(b) Prove Jordan’s Lemma, which states that V = @, W; for some subspaces W; of V, where
dim(W;) < 2, and each W; is both P-invariant and Q-invariant.

(c) Conclude that each W; is (I — 2Q)(I — 2P)-invariant (i.e., is an invariant subspace of the

product of reflections about the subspaces P and Q project onto).

4. Recall that the minimal polynomial of a matrix A € My, x,(C) is the unique monic polynomial
p € C[x] of lowest degree such that p(A) is the zero matrix.



(a) Compute the minimal polynomial of the matrix

A 0 --- 0
0 X 1 :
An=10 0o . . 0| €Mun(C).
S S |
o --- 0 0 A

(b) What is the minimial polynomial of Ay, ® A, .m7?



