
ASSIGNMENT 10 Math 245 (Winter 2009)
Due at the start of class on Wednesday 1 April.

1. In class, we analyzed a quantum Markov chain that searches for a single needle in a quantum
haystack containing one needle and n − 1 pieces of hay. In this problem, you will consider the
case where the quantum haystack contains k needles and n− k pieces of hay.

(a) Construct a quantum Markov chain that describes the search, defined by a unitary matrix
U ∈ Mn×n(C). Your initial state should be u ∈ Cn, where ui = 1/

√
n for all i ∈ {1, . . . , n}.

(b) Let v ∈ Cn be the quantum state with vi = 1/
√
k if state i represents a needle and vi = 0

otherwise. Show that W := span{u, v} is a U -invariant subspace of Cn, and construct an
orthonormal basis for it.

(c) Compute Umu, where m is a positive integer. How should one choose m so that |〈Umu, v〉|2
is close to 1?

2. Let U ∈ Mn×n(C) be a unitary matrix. Recall that if U 6= I, then limm→∞ U
m does not exist,

so U does not have a unique limiting distribution. Nevertheless, in this problem we explore one
way of defining a sensible notion of the limiting distribution of a quantum Markov chain.

(a) Define the limiting distribution of the quantum Markov chain with initial state v ∈ Cn and
unitary transition matrix U ∈ Mn×n(C) to be the vector p ∈ Rn defined by

pj := lim
M→∞

1
M

M−1∑
m=0

|(Umv)j |2.

(You can think of this as running the quantum Markov chain for m steps, where m is chosen
randomly between 0 and M − 1, and then making a measurement.) Show that this limit
always exists, and that p is a probability vector. In particular, give an expression for p in
terms of v and the spectral decomposition of U .

(b) Recall that if A is a regular stochastic matrix, then limm→∞A
m exists and has all columns

identical, so that the corresponding Markov chain has a unique limiting distribution Amw
that is independent of the initial probability vector w. Is the limiting distribution of a
quantum Markov chain, as defined in part (a), independent of the initial quantum state v?

3. Let V be a finite-dimensional inner product space, and let P,Q ∈ L(V) be orthogonal projections.

(a) Let v ∈ V be an eigenvector of P + Q. Show that the P-cyclic subspace generated by v is
Q-invariant.

(b) Prove Jordan’s Lemma, which states that V =
⊕

i Wi for some subspaces Wi of V, where
dim(Wi) ≤ 2, and each Wi is both P-invariant and Q-invariant.

(c) Conclude that each Wi is (I − 2Q)(I − 2P)-invariant (i.e., is an invariant subspace of the
product of reflections about the subspaces P and Q project onto).

4. Recall that the minimal polynomial of a matrix A ∈ Mn×n(C) is the unique monic polynomial
p ∈ C[x] of lowest degree such that p(A) is the zero matrix.
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(a) Compute the minimal polynomial of the matrix

Aλ,n :=



λ 1 0 · · · 0

0 λ 1
. . .

...

0 0
. . . . . . 0

...
. . . . . . λ 1

0 · · · 0 0 λ


∈ Mn×n(C).

(b) What is the minimial polynomial of Aλ,n ⊕Aµ,m?
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