ASSIGNMENT 1

Math 245 (Winter 2009)
Due at the start of class on Wednesday 14 January.

1. Let $\mathrm{V}_{1}, \mathrm{~V}_{2}$ be vector spaces. Prove or disprove each of the following.
(a) If W_{1} is a subspace of V_{1} and W_{2} is a subspace of V_{2}, then $W_{1} \oplus W_{2}$ is a subspace of $\mathrm{V}_{1} \oplus \mathrm{~V}_{2}$.
(b) If W_{1} is a subspace of V_{1} and W_{2} is a subspace of V_{2}, then $W_{1} \otimes W_{2}$ is a subspace of $\mathrm{V}_{1} \otimes \mathrm{~V}_{2}$.
(c) If W is a subspace of $\mathrm{V}_{1} \oplus \mathrm{~V}_{2}$, then there exists a subspace W_{1} of V_{1} and a subspace W_{2} of V_{2} such that $\mathrm{W}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2}$.
(d) If W is a subspace of $\mathrm{V}_{1} \otimes \mathrm{~V}_{2}$, then there exists a subspace W_{1} of V_{1} and a subspace W_{2} of V_{2} such that $\mathrm{W}=\mathrm{W}_{1} \otimes \mathrm{~W}_{2}$.
(e) If W_{1} is a subspace of V_{1} and W_{2} is a subspace of V_{2}, then $\left(\mathrm{V}_{1} \oplus \mathrm{~V}_{2}\right) /\left(\mathrm{W}_{1} \oplus \mathrm{~W}_{2}\right)=$ $V_{1} / W_{1} \oplus V_{2} / W_{2}$.
(f) If W_{1} is a subspace of V_{1} and W_{2} is a subspace of V_{2}, then $\left(\mathrm{V}_{1} \otimes \mathrm{~V}_{2}\right) /\left(\mathrm{W}_{1} \otimes \mathrm{~W}_{2}\right)=$ $\mathrm{V}_{1} / \mathrm{W}_{1} \otimes \mathrm{~V}_{2} / \mathrm{W}_{2}$.
2. Let V be an inner product space with $\operatorname{dim} \mathrm{V} \geq 2$. Call $\mathrm{T} \in \mathcal{L}(\mathrm{V} \otimes \mathrm{V})$ a unit vector cloner if there exists a fixed $w \in \mathrm{~V}$ such that for all $v \in \mathrm{~V}$ with $\langle v, v\rangle=1, \mathrm{~T}(v \otimes w)=v \otimes v$. Show that a unit vector cloner does not exist.
3. Define $A:=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$ and $B:=\left(\begin{array}{lll}3 & 3 & 2 \\ 5 & 4 & 3 \\ 0 & 3 & 1\end{array}\right)$.
(a) $\operatorname{Compute} \operatorname{rank}(A)$ and $\operatorname{rank}(B)$.
(b) Compute $A \otimes B$.
(c) $\operatorname{Compute} \operatorname{rank}(A \otimes B)$.
(d) Prove that for any two matrices $C, D, \operatorname{rank}(C \otimes D)=\operatorname{rank}(C) \operatorname{rank}(D)$.
4. Let A, B be matrices.
(a) Prove that $A \oplus B$ is invertible if and only if A, B are invertible.
(b) Is the same true of $A \otimes B$? Why or why not?
5. In this problem, we explore another way to make new vector spaces from old ones. Let V be a vector space with subspaces U, W.
(a) Under what conditions is $\mathrm{U} \cap \mathrm{W}$ a subspace of V ?
(b) Supposing that V is finite-dimensional, give an expression (with proof) for $\operatorname{dim}(\mathrm{U} \cap \mathrm{W})$ in terms of $\operatorname{dim} \mathbf{U}$, $\operatorname{dim} \mathbf{W}$, and $\operatorname{dim}(\mathbf{U}+\mathbf{W})$.
