ASSIGNMENT 1

Due at the start of class on Wednesday 14 January.

- 1. Let V_1, V_2 be vector spaces. Prove or disprove each of the following.
 - (a) If W_1 is a subspace of V_1 and W_2 is a subspace of V_2 , then $W_1 \oplus W_2$ is a subspace of $V_1 \oplus V_2$.
 - (b) If W_1 is a subspace of V_1 and W_2 is a subspace of V_2 , then $W_1 \otimes W_2$ is a subspace of $V_1 \otimes V_2$.
 - (c) If W is a subspace of $V_1 \oplus V_2$, then there exists a subspace W_1 of V_1 and a subspace W_2 of V_2 such that $W = W_1 \oplus W_2$.
 - (d) If W is a subspace of $V_1 \otimes V_2$, then there exists a subspace W_1 of V_1 and a subspace W_2 of V_2 such that $W = W_1 \otimes W_2$.
 - (e) If W_1 is a subspace of V_1 and W_2 is a subspace of V_2 , then $(V_1 \oplus V_2)/(W_1 \oplus W_2) = V_1/W_1 \oplus V_2/W_2$.
 - (f) If W_1 is a subspace of V_1 and W_2 is a subspace of V_2 , then $(V_1 \otimes V_2)/(W_1 \otimes W_2) = V_1/W_1 \otimes V_2/W_2$.
- 2. Let V be an inner product space with dim $V \ge 2$. Call $T \in \mathcal{L}(V \otimes V)$ a *unit vector cloner* if there exists a fixed $w \in V$ such that for all $v \in V$ with $\langle v, v \rangle = 1$, $T(v \otimes w) = v \otimes v$. Show that a unit vector cloner does not exist.

3. Define
$$A := \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
 and $B := \begin{pmatrix} 3 & 3 & 2 \\ 5 & 4 & 3 \\ 0 & 3 & 1 \end{pmatrix}$.

- (a) Compute rank(A) and rank(B).
- (b) Compute $A \otimes B$.
- (c) Compute rank $(A \otimes B)$.
- (d) Prove that for any two matrices C, D, $rank(C \otimes D) = rank(C) rank(D)$.
- 4. Let A, B be matrices.
 - (a) Prove that $A \oplus B$ is invertible if and only if A, B are invertible.
 - (b) Is the same true of $A \otimes B$? Why or why not?
- 5. In this problem, we explore another way to make new vector spaces from old ones. Let V be a vector space with subspaces U, W.
 - (a) Under what conditions is $U \cap W$ a subspace of V?
 - (b) Supposing that V is finite-dimensional, give an expression (with proof) for $\dim(U\cap W)$ in terms of $\dim U$, $\dim W$, and $\dim(U+W)$.