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1 Alternative Derivation

Another nice property of PCA, closely related to the original discussion by Pearson [1], is

that the projection onto the principal subspace minimizes the squared reconstruction error,

∑t
i=1 ||xi − x̂i||2. In other words, the principal components of a set of data in <n provide a

sequence of best linear approximations to that data, for all ranks d ≤ n.

Consider the rank-d linear approximation model as :

f(y) = x̄ + Udy

This is the parametric representation of a hyperplane of rank d.

For convenience, suppose x̄ = 0 (otherwise the observations can be simply replaced by

their centered versions x̃ = xi− x̄). Under this assumption the rank d linear model would be

f(y) = Udy, where Ud is a n× d matrix with d orthogonal unit vectors as columns and y is a

vector of parameters. Fitting this model to the data by least squares leaves us to minimize

the reconstruction error:

min
Ud,yi

t∑
i

||xi − Udyi||2
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By partial optimization for yi we obtain:

d

dyi

= 0 ⇒ yi = UT
d xi

Now we need to find the orthogonal matrix Ud:

min
Ud

t∑
i

||xi − UdU
T
d xi||2

Define Hd = UdU
T
d . Hd is a n× n matrix which acts as a projection matrix and projects

each data point xi onto its rank d reconstruction. In other words, Hdxi is the orthogonal

projection of xi onto the subspace spanned by the columns of Ud. A unique solution U can be

obtained by finding the singular value decomposition of X [2]. For each rank d, Ud consists

of the first d columns of U .

2 Toward Kernel PCA

PCA is designed to model linear variabilities in high-dimensional data. However, many high

dimensional data sets have a nonlinear nature. In these cases the high-dimensional data lie

on or near a nonlinear manifold (not a linear subspace) and therefore PCA can not model

the variability of the data correctly. One of the algorithms designed to address the problem

of nonlinear dimensionality reduction is Kernel PCA (See Figure 1 for an example). In

Kernel PCA, through the use of kernels, principle components can be computed efficiently

in high-dimensional feature spaces that are related to the input space by some nonlinear

mapping.
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Figure 1: Kernel PCA with Gaussian kernel applied to the same data set. A two-dimensional

projection is shown, with a sample of the original input images.

Kernel PCA finds principal components which are nonlinearly related to the input space

by performing PCA in the space produced by the nonlinear mapping, where the low-

dimensional latent structure is, hopefully, easier to discover.

Example:

The usage of kernel can be best seen through a classification example. Consider the diagram

(Fig. 2). In the two dimensional space the separation boundary is not linear. In other words,

it is impossible to separate dots from crosses by a liner classifier (a line in two-dimensional

space). Now suppose an auxiliary dimension is added to this 2-dimensional space. More

precisely suppose any 2-dimensional point ~x is mapped to a 3-dimensional point ~Φx (we call

this new space, feature space) as follows:
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It is clear that in the 3-dimensional space the points become linearly separable. So that

they can indeed be separted by a linear hyperplane. We can take advantage of the fact that

in higher dimensions the separation may become linear.

Figure 2: Two dimensional classification example. A separation in feature space can be

found using a linear hyperplane (right). In input space this construction corresponds to a

non-linear ellipsoidal decision boundary (left). (figure from Scholkopf and Smola 2002)

Working with points in feature space (a space with higher dimension) will increase the

computational complexity and therefore will not be desirable. However, there is a compu-

tational shortcut which makes it possible to represent linear structure efficiently in high-

dimensional spaces. The shortcut is what we call a kernel function.
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Definition 1: [Kernel function] A kernel is a function k that for all x, z ∈ X satisfies

K(x, z) = < Φ(x), Φ(z) >

where < ., . > is inner product and Φ is a mapping from X to an feature space.

Example 1: Consider a two-dimensional input space together with the feature map

Φ : x = (x1, x2) ` Φ(x) = (x2
1, x

2
2,
√

2x1x2) ∈ H.

The inner product in the feature space can be evaluated as follows:

< Φ(x), Φ(z) > =
〈
x2

1, x
2
2,
√

2x1x2), z
2
1 , z

2
2 ,
√

2z1z2)
〉

= x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= (x1z1 + x2z2)
2 =< x, z >2

Hence, the function

k(x, z) = < x, z >2

is a kernel function with H its corresponding feature space.

The following is a short list of common kernels.

Linear Kernel:

kij =< xi, xj >

Gaussian Kernel:

kij = e
−||xi−xj ||2

2σ2

Polynomial Kernel:

kij = (1+ < xi, xj >)p
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