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1 Mixture Models

In this section the data points come from a density function. Lets assume that the data

comes from a Gaussian, or a mixture of Gaussian. We have chosen the Gaussian distribution

so that it is easier to find the mean and variance. The task of clustering is the task of finding

the parameter estimates for each of the Gaussian distributions for the given data set.

1.1 Reminder

According to Bayes rule:

P (x|y) =
P (y|x)P (x)

P (y)

Where:

1. P (x|y) is called to posterior. In order to find the posterior we need to know a prior.

2. P (x) is called the prior and its values must be assumed based on some prior knowledge.

3. P (y|x) is called the likelihood and in order to calculate it we need to assume a distri-

bution for the data.
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1.2 Mixture of Gaussian

Suppose we have a mixture of two Gaussian.

P (x|θ) = αN(x; µ1, σ1) + (1 − α)N(x; µ2, σ2)

Where θ = {µ1, µ2, σ1, σ2, α}. We can assume that there is a hidden variable Z which picks

the first normal with probability α and it picks the second normal with probability (1− α).

We can then redefine the set of input data as Data = {(x1, z1), (x2, z2), . . . (xn, zn)} where

the zi are unknown. Then,

P (Data|θ) = P (x, z|θ)

= P (x|z, θ)P (z|θ)

If zi = 1 then P (X|Z, θ) = φ1(x) = N(xi; µ1, σ1).

If zi = 0 then P (X|Z, θ) = φ2(x) = N(xi; µ2, σ2).

Therefore, P (xi|zi, θ) = φ1(x)ziφ2(x)1−zi .

We can also rewrite the other term in the product as: P (zi|θ) = αziα1−zi. And therefore we

get

P (X|Z, θ) = φ1(x)ziφ2(x)1−ziαziα1−zi

The complete likelihood can be written as follows.

Lc(X, θ) =
n∏

i=1

P (xi|zi, θ)
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It would be useful to take the expectation of the log likelihood but for this we need to assume

that the expectation of zi is known. So assume that E[zi] = wi.

Lc(X, θ) = φ1(x)ziφ2(x)1−ziαziα1−zi

lc(X, θ) = zilog(φ1(x)) + (1 − zi)log(φ2(x)) + zilog(α) + (1 − zi)log(1 − α)

E[lc(X, θ)] = wilog(φ1(x)) + (1 − wi)log(φ2(x)) + wilog(α) + (1 − wi)log(1 − α)

1.2.1 M-Step

Assume E[zi] = wi. We need to maximise the expectation of the log likelihood. Take the

derivative with respect to each parameter in θ and set it equal to zero.

dl

dα
= 0 ⇒ α =

∑n

i=1 wi

n

dl

dµ1

= 0 ⇒ µ1 =

∑n

i=1 wixi∑n

i=1 wi

dl

dµ2
= 0 ⇒ µ2 =

∑n

i=1(1 − wi)xi∑n

i=1(1 − wi)

dl

dσ1

= 0 ⇒ σ1 =

∑n

i=1 wi(xi − µ1)
2

∑n

i=1 wi

dl

dσ2
= 0 ⇒ σ2 =

∑n

i=1(1 − wi)(xi − µ2)
2

∑n

i=1(1 − wi)

The M-Step can estimate the parameters θ if we have wi.
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1.2.2 E-Step

To get E[zi] we need to know the parameters θ. The purpose of the E-Step is to find wi if

we know θ.

E[zi] = Ezi|xi,θ
(t)(zi)

=
∑

z

ziP (zi|xiθ
(t))

= 1P (zi = 1|xiθ
(t)) + 0P (zi = 0|xiθ

(t))

= 1P (zi = 1|xiθ
(t))

=
P (zi, xi|θ

(t))

P (xi|θ(t))

=
P (xi|ziθ

(t))P (zi|θ
(t))∑

zi
P (zi, xi|θ(t))

=
αN(xi, µ1, σ1)

αN(xi, µ1, σ1) + (1 − α)N(xi, µ2, σ2)
= wi

The EM-Algorithm employs alternating the E-Step and the M-Step so that at each iteration

we get closer to a solution of wi and θ. We stop integrating when we see that the estimates

of the parameters have converged.
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