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1 Combinatorial Algorithms:

Suppose we have n data points which are indexed 1 . . . n and suppose we would like to cluster

these points into k clusters 1 . . .K. We need to assign each point to one cluster. k = C(i)

where C(i) is the encoder. The goal is to find a grouping of data such that distances between

points within a certain cluster are small and distances between points that are assigned to

different clusters tends to be large.

If we need to minimize the distance within each cluster then we need:

min
c∗

w(C) =

K
∑

k=1

∑

C(i)=k

∑

C(j)=k

dij

Consider now the sum of all of the distances between all of the points. Call this distance T .

T =
K

∑

k=1

∑

C(i)=k

(
∑

C(j)=k

dij +
∑

C(j)6=k

dij) (1)

=
K

∑

k=1

∑

C(i)=k

∑

C(j)=k

dij +
K

∑

k=1

∑

C(i)=k

∑

C(j)6=k

dij (2)

= w(C) + b(C) (3)

Where w(C) is the previous within cluster distance and b(C) is the between cluster distance.
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Since T is a constant it is sufficient to minimize w(C) because at the same time we maximise

b(C). The problem is that the minimization of w(C) is a computationally intensive task and

will only be feasible for small data sets. The number of distinct assignments, and thus the

complexity of the algorithm, for n points and k clusters is:

S(n, k) =
1

k!

K
∑

k=1

(−1)K−k

(

K

k

)

kn

So for example

S(10, 4) = 34105 (4)

S(19, 4)
.
= 1010 (5)

Clearly as the data set becomes large any such calculation takes too long.

Idea: Take a greedy descent approach. First initialize C(i) to a starting value. Then,

take the slope in such a way that the criterion w(C) improves at each step. Stop the algorithm

when there is no further improvement.

w(C) =

K
∑

k=1

∑

C(i)=k

∑

C(j)=k

dij (6)

=

K
∑

k=1

∑

C(i)=k

∑

C(j)=k

||xi − xj ||
2 (7)

=

K
∑

k=1

ηk

∑

C(i)=k

||xi − x̄k||
2 (8)

Where ηk is the number of points in cluster k.

Aside: For any set of observations S:

x̄S = argminm

∑

iǫS

||xi − m||2
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Now,

c∗ = min
C

K
∑

k=1

ηk

∑

C(i)=k

||xi − x̄k||
2 (9)

= min
C,{m}K

k=1

K
∑

k=1

ηk

∑

C(i)=k

||xi − m||2 (10)

We can optimize 10 in two steps.

1. Given C, 10 is minimized yielding {m1 . . .mk} to be the mean of all data points in

each cluster.

2. Given {m}K

k=1, 10 is minimized by assigning each xi to its closest x̄k. So c∗ =

argmin1≤k≤K ||xi − x̄k||.

1.1 K-Means Clustering

1. Set K, the number of clusters.

2. Assign points to these K clusters randomly.

3. Iterate through the stapes of the previous procedure until there is no improvement in

w(C).
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