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1 Unified Framework

All of the algorithms presented so far can be cast as kernel PCA,

A straightforward connection between LLE and Kernel PCA has been shown in [2] and

[6]. Let λmax be the largest eigenvalue of L = (I − W )T (I − W ). Then define the LLE

kernel to be:

KLLE = λmaxI − L (1)

This kernel is, in fact, a similarity measure based on the similarity of the weights required

to reconstruct two patterns in terms of k neighbouring patterns. The leading eigenvector of

KLLE is e, and the eigenvectors 2, . . . , d + 1 provide the LLE embedding.

An alternative interpretation of LLE as a specific form of Kernel PCA has been discussed

in [1] in details. Based on this discussion, performing Kernel PCA on pseudo-inverse L† is

equivalent to LLE up to scaling factors.

KLLE = L† (2)
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It has been also shown [5] that metric MDS can be interpreted as kernel PCA. Given a

distance matrix D, one can define KMDS as:

KMDS = −1

2
(I − eeT )D(I − eeT ) (3)

where e is a column vector of all ones.

In the same fashion, given the geodesic distance D(G) used in Isomap, KIsomap can be

defined as [1]:

KIsomap = −1

2
(I − eeT )D(G)(I − eeT ) (4)

The eigenvectors of (3) and (4) yield solutions identical to MDS and Isomap, up to scaling

factor
√

λp, where λp is the p-th eigenvector.

The connection between kernel PCA and Semidefinite Embedding (SDE) ,that will be

introduced shortly, is even more obvious. In fact, SDE is an instance of kernel PCA and the

only difference is that SDE learns a kernel from data which is suitable for manifold discovery,

while classical kernel PCA chose a kernel function a priori.

2 Semidefinite Embedding (SDE):

In 2004, Weinberger and Saul introduced semidefinite embedding (SDE) [4, 3] (See Figure

1 for an example). SDE (also known as Maximum Variance Unfolding) can be seen as a

variation on kernel PCA, in which the kernel matrix is also learned from the data. This is

in contrast with classical kernel PCA which chooses a kernel function a priori. To derive

SDE, Weinberger and Saul formulated the problem of learning the kernel matrix as an
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Figure 1: SDE applied (k = 5) to the same data set. A two-dimensional projection is shown,

with a sample of the original input images.

instance of semidefinite programming. Since the kernel matrix K represents inner products

of vectors in a Hilbert space it must be positive semidefinite. Also the kernel should be

centered, i.e.
∑

ij Kij = 0. Finally, SDE imposes constraints on the kernel matrix to ensure

that the distances and angles between points and their neighbours are preserved under the

neighbourhood graph η. That is, if both xi and xj are neighbours (i.e. ηij = 1) or are common

neighbours of another input (i.e. [ηT η]ij > 0), then the distance should be preserved

||Φ(xi)− Φ(xj)||2 = ||xi − xj||2.

It is straightforward to see:
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||Φ(xi)− Φ(xj)||2 = Φ(xi)
T Φ(xj)− Φ(xj)

T Φ(xi)− Φ(xi)
T Φ(xi) + Φ(xj)

T Φ(xj)

= Kii −Kij −Kji + Kjj

= Kii − 2Kij + Kjj

= ||xi − xj||2

Therefore, in terms of the kernel matrix, this constraint can be written as:

Kij − 2Kij + Kjj = ||xi − xj||2.

By adding an objective function to maximize Tr(K) which represents the variance of the

data points in the learned feature space, SDE constructs a semidefinite program for learning

the kernel matrix K.

Note that the ideal objective function would be one that minimizes the rank of the matrix

K. Unfortunately, this problem (minimizes the rank of the matrix K) is intractable. The

alternative objective function i.e. Tr(K) is in fact the sum of the eigenvalues of K. Recall

from PCA that each eigenvalue represents the variation of the data in the corresponding

learned direction. Thus maximizing the sum of the eigenvalues is the same as maximizing

the variance of the data points in the learned feature space.

The last detail of SDE is the construction of the neighbourhood graph ηij. This graph

is constructed by connecting the k nearest neighbours using a similarity function over the

data, ||xi − xj||. In its last step, SDE runs kernel PCA on learned kernel K. The algorithm

is summarized in Algorithm SDE (Table 1).
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Algorithm: SDE

Construct neighbours, η, using k-nearest neighbours.

Maximize Tr(K) subject to K º 0,
∑

ij Kij = 0, and

∀ij ηij > 0 ∨ [ηT η]ij > 0 ⇒

Kii − 2Kij + Kjj = ||xi − xj||2

Run Kernel PCA with learned kernel, K.

Table 1: SDE Algorithm

Open Questions: Experiments with SDE show that maximizing Tr(K) =
∑

i λi lead

to a low rank solution.

• Why does maximizing the variance lead to a low rank solution?

• Under what conditions do our solutions converge to the right solution?

Strengths of SDE:

• Eigenvalues reveal the true dimensionality of the data.

• We have a low dimensional map which preserve local isometry.

Weaknesses of SDE:

• SDE limited to an isometric map. The isometric property of SDE is both an advantage

and a disadvantage.

• The algorithm is computationally intensive. SDE is polynomial time but the degree

of the polynomial is high so it is really only feasible to work with no more than 2000
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data points and no more than 6 neighbours.
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