Data Visualization

STAT 442 / 890, CM 462
Lecture: Ali Ghodsi
Scribes: Stefan Pintilie

1 Landmark MDS cont...

Previously we saw that we could approximate the symmetric matrix K by knowing only the A and B parts.

$$
K=\left(\begin{array}{cc}
A & B \\
B^{T} & B^{T} A^{-1} B
\end{array}\right)
$$

To get the values of the A and B parts we need to first consider the set of data points $X=\left(x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}\right)$. We can select the first m of these points and call them R. The rest of the points can be called S. The set of points can be rewritten as $X=(R, S)$.

The expressions for A and B become:

$$
\begin{aligned}
& A=R^{T} R \\
& B=R^{T} S
\end{aligned}
$$

Since A is positive semi-definite we can also write A as:

$$
A=U \Gamma U^{T}
$$

Therefore,

$$
R=\Gamma^{1 / 2} U^{T}
$$

And,

$$
S=R^{-T} B=\Gamma^{-1 / 2} U^{T} B
$$

Recall that in MDS

$$
X=\Lambda^{1 / 2} V^{T}
$$

and

$$
Y_{d}=\Lambda_{d}^{1 / 2} V_{d}^{T}
$$

In the Nyström approximation the estimate for Y is:
$Y=\Lambda_{d}^{1 / 2} U_{d}^{T}$ if i is less than or equal to m.
$Y=\Lambda_{d}^{-1 / 2} U_{d}^{T} B$ if i is greater than m.

The low dimensional map Y can be approximated only by the eigendecomposition of A.
The approximation is exact if the rank of K is m or less. That is if $\operatorname{rank}(K) \leq m$. Which implies that $\left\|B^{T} A^{-1} B-C\right\|^{2}=0$. Otherwise, the quality of the approximation depends on the value of $\left\|B^{T} A^{-1} B-C\right\|^{2}$.

Problem: So far we have been working with the kernel matrix K. In landmark MDS we do not begin with K. We begin with the distance matrix D.

$$
D=\left(\begin{array}{cc}
E & F \\
F^{T} & G
\end{array}\right)
$$

In order to turn the Nyström Approximation into Landmark MDS we need to be able to find A and B based on E and F. Recall from MDS that $K=\frac{-1}{2} H D H$ where $H=I-\frac{1}{n} e e^{T}$. This is equivalent to:

$$
K_{i j}=d_{i j}^{2}-\sum_{i} c_{i} d_{i j}^{2}-\sum_{j} c_{j} d_{i j}^{2}+\sum_{i, j} c_{i} c_{j} d_{i j}^{2}=\frac{-1}{2} H D H
$$

such that $\sum_{i} c_{i}=1$ and $\sum_{j} c_{j}=1$.
In order to find A and B from E and F set $c_{i}=\frac{1}{m}$ if $i \leq m$ and zero otherwise. Then A and B can be estimated as follows:

$$
\begin{align*}
A_{i j} & =d_{i j}^{2}-\frac{1}{m} \sum_{i} d_{i j}^{2}-\frac{1}{m} \sum_{j} d_{i j}^{2}+\frac{1}{m^{2}} \sum_{i, j} d_{i j}^{2} \tag{1}\\
B_{i j} & =F_{i j}^{2}-\frac{1}{m} \sum_{i} F_{i j}^{2}-\frac{1}{m} \sum_{j} F_{i j}^{2} \tag{2}
\end{align*}
$$

The last double summation term for $B_{i j}$ is dropped, because it introduces an irrelevant shift of origin.

