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1 Introduction

Feature extraction can be viewed as a preprocessing step which removes distract-
ing variance from a dataset, so that downstream classifiers or regression estimators
perform better. The area where feature extraction ends and classification, or re-
gression, begins is necessarily murky: an ideal feature extractor would simply map
the data to its class labels, for the classification task. On the other hand, a charac-
ter recognition neural net can take minimally preprocessed pixel values as input,
in which case feature extraction is an inseparable part of the classification process
[32]. Dimensional reduction - the (usually non-invertible) mapping of data to a
lower dimensional space - is closely related (often dimensional reduction is used
as a step in feature extraction), but the goals can differ. Dimensional reduction has
a long history as a method for data visualization, and for extracting key low di-
mensional features (for example, the 2-dimensional orientation of an object, from
its high dimensional image representation). The need for dimensionality reduction
also arises for other pressing reasons. Stone (1982) [46] showed that, under certain
regularity assumptions, the optimal rate of convergence1 for nonparametric regres-
sion varies as m−p/(2p+d), where m is the sample size, the data lies in Rd, and
where the regression function is assumed to be p times differentiable. Consider
10,000 sample points, for p = 2 and d = 10. If d is increased to 20, the number
of sample points must be increased to approximately 10 million in order to achieve
the same optimal rate of convergence. If our data lie (approximately) on a low
dimensional manifold L that happens to be embedded in a high dimensional man-
ifold H, modeling the projected data in L rather than in H may turn an infeasible
problem into a feasible one.
The purpose of this review is to describe the mathematics and ideas underlying the
algorithms. Implementation details, although important, are not discussed. Some
notes on notation: vectors are denoted by boldface, whereas components are de-
noted by xa, or by (xi)a for the a’th component of the i’th vector. Following [29],
the set of p by q matrices is denoted Mpq, and the set of (square) p by p matrices
by Mp, and the set of symmetric p by p matrices by Sp (all matrices considered
are real). e with no subscript is used to denote the vector of all ones; on the other
hand ea denotes the a’th eigenvector. We denote sample size by m, and dimension
usually by d or d′, with typically d′ � d. δij is the Kronecker delta (the ij’th

1For convenience we reproduce Stone’s definitions [46]. Let θ be the unknown regression func-
tion, T̂n an estimator of θ using n samples, and {bn} a sequence of positive constants. Then {bn}
is called a lower rate of convergence if there exists c > 0 such that limn inf T̂n

supθ P (‖T̂n − θ‖ ≥
cbn) = 1, and it is called an achievable rate of convergence if there is a sequence of estimators
{T̂n} and c > 0 such that limn supθ P (‖T̂n − θ‖ ≥ cbn) = 0; {bn} is called an optimal rate of
convergence if it is both a lower rate of convergence and an achievable rate of convergence.
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component of the unit matrix). We generally reserve indices i, j, to index vectors
and a, b to index dimension.
We place feature extraction and dimensional reduction techniques into two broad
categories: methods that rely on projections (Section 2) and methods that attempt
to model the manifold on which the data lies (Section 3). Section 2 gives a de-
tailed description of principal component analysis; apart from its intrinsic useful-
ness, PCA is interesting because it serves as a starting point for many modern
algorithms, some of which (kernel PCA, probabilistic PCA, and oriented PCA)
are also described. However it has clear limitations: it is easy to find even low
dimensional examples where the PCA directions are far from optimal for feature
extraction [19], and PCA ignores correlations in the data that are higher than sec-
ond order. Section 3 starts with an overview of the Nyström method, which can
be used to extend, and link, several of the algorithms described in this chapter.
We then examine some methods for dimensionality reduction which assume that
the data lie on a low dimensional manifold embedded in a high dimensional space
H, namely locally linear embedding, multidimensional scaling, Isomap, Laplacian
eigenmaps, and spectral clustering.

2 Projective Methods

If dimensional reduction is so desirable, how should we go about it? Perhaps the
simplest approach is to attempt to find low dimensional projections that extract use-
ful information from the data, by maximizing a suitable objective function. This is
the idea of projection pursuit [23]. The name ’pursuit’ arises from the iterative ver-
sion, where the currently optimal projection is found in light of previously found
projections (in fact originally this was done manually2). Apart from handling high
dimensional data, projection pursuit methods can be robust to noisy or irrelevant
features [30], and have been applied to regression [21], where the regression is ex-
pressed as a sum of ’ridge functions’ (functions of the one dimensional projections)
and at each iteration the projection is chosen to minimize the residuals; to classi-
fication; and to density estimation [22]. How are the interesting directions found?
One approach is to search for projections such that the projected data departs from
normality [30]. One might think that, since a distribution is normal if and only
if all of its one dimensional projections are normal, if the least normal projection
of some dataset is still approximately normal, then the dataset is also necessarily
approximately normal, but this is not true; Diaconis and Freedman have shown
that most projections of high dimensional data are approximately normal [17] (see

2See J.H. Friedman’s interesting response to [30] in the same issue.
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also below). Given this, finding projections along which the density departs from
normality, if such projections exist, should be a good exploratory first step.
The sword of Diaconis and Freedman cuts both ways, however. If most projections
of most high dimensional datasets are approximately normal, perhaps projections
are not always the best way to find low dimensional representations. Let’s review
their results in a little more detail. The main result can be stated informally as
follows: consider a model where the data, the dimension d, and the sample size
m depend on some underlying parameter ν, such that as ν tends to infinity, so do
m and d. Suppose that as ν tends to infinity, the fraction of vectors which are
not approximately the same length tends to zero, and suppose further that under
the same conditions, the fraction of pairs of vectors which are not approximately
orthogonal to each other also tends to zero3. Then ([17], theorem 1.1) the empirical
distribution of the projections along any given unit direction tends to N(0, σ2)
weakly in probability. However, if the conditions are not fulfilled, as for some
long-tailed distributions, then the opposite result can hold - that is, most projections
are not normal (for example, most projections of Cauchy distributed data4 will be
Cauchy [17]).
As a concrete example5, consider data uniformly distributed over the unit n + 1-
sphere Sn+1 for odd n. Let’s compute the density projected along any line I
passing through the origin. By symmetry, the result will be independent of the
direction we choose. If the distance along the projection is parameterized by ξ ≡
cos θ, where θ is the angle between I and the line from the origin to a point on the
sphere, then the density at ξ is proportional to the volume of an n-sphere of radius
sin θ: ρ(ξ) = C(1 − ξ2)

n−1
2 . Requiring that

∫ 1
−1 ρ(ξ)dξ = 1 gives the constant C:

C = 2−
1
2
(n+1) n!!

(1
2(n − 1))!

(1)

Let’s plot this density and compare against a one dimensional Gaussian density
fitted using maximum likelihood. For that we just need the variance, which can be
computed analytically: σ2 = 1

n+2 , and the mean, which is zero. Figure 1 shows
the result for the 20-sphere. Although data uniformly distributed on S20 is far
from Gaussian, its projection along any direction is close to Gaussian for all such
directions, and we cannot hope to uncover such structure using one dimensional
projections.

3More formally, the conditions are: for σ2 positive and finite, and for any positive ε,
(1/m)card{j ≤ m : |‖xj‖2 − σ2d| > εd} → 0 and (1/m2)card{1 ≤ j, k ≤ m : |xj · xk| >
εd} → 0 [17].

4The Cauchy distribution in one dimension has density c/(c2 + x2) for constant c.
5The story for even n is similar but the formulae are slightly different
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Figure 1: Dotted line: a Gaussian with zero mean and variance 1/21. Solid line:
the density projected from data distributed uniformly over the 20-sphere, to any
line passing through the origin.

The notion of searching for non-normality, which is at the heart of projection pur-
suit (the goal of which is dimensional reduction), is also the key idea underlying
independent component analysis (ICA) (the goal of which is source separation).
ICA [31] searches for projections such that the probability distributions of the data
along those projections are statistically independent: for example, consider the
problem of separating the source signals in a linear combinations of signals, where
the sources consist of speech from two speakers who are recorded using two mi-
crophones (and where each microphone captures sound from both speakers). The
signal is the sum of two statistically independent signals, and so finding those inde-
pendent signals is required in order to decompose the signal back into the two orig-
inal source signals, and at any given time, the separated signal values are related to
the microphone signals by two (time independent) projections (forming an invert-
ible 2 by 2 matrix). If the data is normally distributed, finding projections along
which the data is uncorrelated is equivalent to finding projections along which it
is independent, so although using principal component analysis (see below) will
suffice to find independent projections, those projections will not be useful for the
above task. For most other distributions, finding projections along which the data
is statistically independent is a much stronger (and for ICA, useful) condition than
finding projections along which the data is uncorrelated. Hence ICA concentrates
on situations where the distribution of the data departs from normality, and in fact,
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finding the maximally non-Gaussian component (under the constraint of constant
variance) will give you an independent component [31].

2.1 Principal Components Analysis (PCA)

2.1.1 PCA: Finding an Informative Direction

Given data xi ∈ Rd, i = 1, · · · ,m, suppose you’d like to find a direction v ∈ Rd

for which the projection xi ·v gives a good one dimensional representation of your
original data: that is, informally, the act of projecting loses as little information
about your expensively-gathered data as possible (we will examine the information
theoretic view of this below). Suppose that unbeknownst to you, your data in fact
lies along a line I embedded in Rd, that is, xi = µ + θin, where µ is the sample
mean6, θi ∈ R, and n ∈ Rd has unit length. The sample variance of the projection
along n is then

vn ≡ 1
m

m∑
i=1

((xi − µ) · n)2 =
1
m

m∑
i=1

θ2
i (2)

and that along some other unit direction n′ is

v′n ≡ 1
m

m∑
i=1

((xi − µ) · n′)2 =
1
m

m∑
i=1

θ2
i (n · n′)2 (3)

Since (n · n′)2 = cos2 φ, where φ is the angle between n and n′, we see that
the projected variance is maximized if and only if n = ±n′. Hence in this case,
finding the projection for which the projected variance is maximized gives you the
direction you are looking for, namely n, regardless of the distribution of the data
along n, as long as the data has finite variance. You would then quickly find that
the variance along all directions orthogonal to n is zero, and conclude that your
data in fact lies along a one dimensional manifold embedded in Rd. This is one of
several basic results of PCA that hold for arbitrary distributions, as we shall see.
Even if the underlying physical process generates data that ideally lies along I ,
noise will usually modify the data at various stages up to and including the mea-
surements themselves, and so your data will very likely not lie exactly along I .
If the overall noise is much smaller than the signal, it makes sense to try to find
I by searching for that projection along which the projected data has maximum
variance. If in addition your data lies in a two (or higher) dimensional subspace,
the above argument can be repeated, picking off the highest variance directions in
turn. Let’s see how that works.

6Note that if all xi lie along a given line then so does µ.
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2.1.2 PCA: Ordering by Variance

We’ve seen that directions of maximum variance can be interesting, but how can
we find them? The variance along unit vector n (Eq. (2)) is n′Cn where C is
the sample covariance matrix. Since C is positive semidefinite, its eigenvalues
are positive or zero; let’s choose the indexing such that the (unit normed) eigen-
vectors ea, a = 1, . . . , d are arranged in order of decreasing size of the corre-
sponding eigenvalues λa. Since the {ea} span the space, we can expand n in
terms of them: n =

∑d
a=1 αaea, and we’d like to find the αa that maximize

n′Cn = n′∑
a αaCea =

∑
a λaα

2
a, subject to

∑
a α2

a = 1 (to give unit normed
n). This is just a convex combination of the λ’s, and since a convex combination
of any set of numbers is maximized by taking the largest, the optimal n is just e1,
the principal eigenvector (or any one of the set of such eigenvectors, if multiple
eigenvectors share the same largest eigenvalue), and furthermore, the variance of
the projection of the data along n is just λ1.
The above construction captures the variance of the data along the direction n. To
characterize the remaining variance of the data, let’s find that direction m which is
both orthogonal to n, and along which the projected data again has maximum vari-
ance. Since the eigenvectors of C form an orthonormal basis (or can be so chosen),
we can expand m in the subspace Rd−1 orthogonal to n as m =

∑d
a=2 βaea. Just

as above, we wish to find the βa that maximize m′Cm =
∑d

a=2 λaβ
2
a , subject to∑d

a=2 β2
a = 1, and by the same argument, the desired direction is given by the (or

any) remaining eigenvector with largest eigenvalue, and the corresponding vari-
ance is just that eigenvalue. Repeating this argument gives d orthogonal directions,
in order of monotonically decreasing projected variance. Since the d directions are
orthogonal, they also provide a complete basis. Thus if one uses all d directions,
no information is lost, and as we’ll see below, if one uses the d′ < d principal
directions, then the mean squared error introduced by representing the data in this
manner is minimized. Finally, PCA for feature extraction amounts to projecting the
data to a lower dimensional space: given an input vector x, the mapping consists
of computing the projections of x along the ea, a = 1, . . . , d′, thereby constructing
the components of the projected d′-dimensional feature vectors.

2.1.3 PCA Decorrelates the Samples

Now suppose we’ve performed PCA on our samples, and instead of using it to con-
struct low dimensional features, we simply use the full set of orthonormal eigen-
vectors as a choice of basis. In the old basis, a given input vector x is expanded
as x =

∑d
a=1 xaua for some orthonormal set {ua}, and in the new basis, the

same vector is expanded as x =
∑d

b=1 x̃beb, so x̃a ≡ x · ea = ea ·∑b xbub.
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The mean µ ≡ 1
m

∑
i xi has components µ̃a = µ · ea in the new basis. The

sample covariance matrix depends on the choice of basis: if C is the covariance
matrix in the old basis, then the corresponding covariance matrix in the new basis
is C̃ab ≡ 1

m

∑
i(x̃ia − µ̃a)(x̃ib − µ̃b) = 1

m

∑
i{ea · (

∑
p xipup −µ)}{∑q xiquq −

µ) · eb} = e′aCeb = λbδab. Hence in the new basis the covariance matrix is di-
agonal and the samples are uncorrelated. It’s worth emphasizing two points: first,
although the covariance matrix can be viewed as a geometric object in that it trans-
forms as a tensor (since it is a summed outer product of vectors, which themselves
have a meaning independent of coordinate system), nevertheless, the notion of cor-
relation is basis-dependent (data can be correlated in one basis and uncorrelated in
another). Second, PCA decorrelates the samples whatever their underlying distri-
bution; it does not have to be Gaussian.

2.1.4 PCA: Reconstruction with Minimum Squared Error

The basis provided by the eigenvectors of the covariance matrix is also optimal
for dimensional reduction in the following sense. Again consider some arbitrary
orthonormal basis {ua, a = 1, . . . , d}, and take the first d′ of these to perform
the dimensional reduction: x̃ ≡ ∑d′

a=1(x · ua)ua. The chosen ua form a basis
for Rd′ , so we may take the components of the dimensionally reduced vectors to
be x · ua, a = 1, . . . , d′ (although here we leave x̃ with dimension d). Define
the reconstruction error summed over the dataset as

∑m
i=1 ‖xi − x̃i‖2. Again as-

suming that the eigenvectors {ea} of the covariance matrix are ordered in order
of non-increasing eigenvalues, choosing to use those eigenvectors as basis vectors
will give minimal reconstruction error. If the data is not centered, then the mean
should be subtracted first, the dimensional reduction performed, and the mean then
added back7; thus in this case, the dimensionally reduced data will still lie in the
subspace Rd′ , but that subspace will be offset from the origin by the mean. Bear-
ing this caveat in mind, to prove the claim we can assume that the data is centered.
Expanding ua ≡∑d

p=1 βapep, we have

1
m

∑
i

‖xi − x̃i‖2 =
1
m

∑
i

‖xi‖2 − 1
m

d′∑
a=1

∑
i

(xi · ua)2 (4)

7The principal eigenvectors are not necessarily the directions that give minimal reconstruction
error if the data is not centered: imagine data whose mean is both orthogonal to the principal eigen-
vector and far from the origin. The single direction that gives minimal reconstruction error will be
close to the mean.
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with the constraints
∑d

p=1 βapβbp = δab. The second term on the right is

−
d′∑

a=1

u′
aCua = −

d′∑
a=1

(
d∑

p=1

βape′p)C(
d∑

q=1

βaqeq) = −
d′∑

a=1

d∑
p=1

λpβ
2
ap

Introducing Lagrange multipliers ωab to enforce the orthogonality constraints [10],
the objective function becomes

F =
d′∑

a=1

d∑
p=1

λpβ
2
ap −

d′∑
a,b=1

ωab

⎛
⎝ d∑

p=1

βapβbp − δab

⎞
⎠ (5)

Choosing8 ωab ≡ ωaδab and taking derivatives with respect to βcq gives λqβcq =
ωcβcq. Both this and the constraints can be satisfied by choosing βcq = 0 ∀q > c
and βcq = δcq otherwise; the objective function is then maximized if the first d′

largest λp are chosen. Note that this also amounts to a proof that the ’greedy’ ap-
proach to PCA dimensional reduction - solve for a single optimal direction (which
gives the principal eigenvector as first basis vector), then project your data into the
subspace orthogonal to that, then repeat - also results in the global optimal solution,
found by solving for all directions at once. The same is true for the directions that
maximize the variance. Again, note that this argument holds however your data is
distributed.

2.1.5PCA Maximizes Mutual Information on Gaussian Data

Now consider some proposed set of projections W ∈ Md′d, where the rows of
W are orthonormal, so that the projected data is y ≡ Wx, y ∈ Rd′ , x ∈ Rd,
d′ ≤ d. Suppose that x ∼ N (0, C). Then since the y’s are linear combinations of
the x’s, they are also normally distributed, with zero mean and covariance Cy ≡
(1/m)

∑m
i yiy′

i = (1/m)W (
∑m

i xix′
i)W

′ = WCW ′. It’s interesting to ask how
W can be chosen so that the mutual information between the distribution of the x’s
and that of the y’s is maximized [2, 18]. Since the mapping W is deterministic, the
conditional entropy H(y|x) vanishes, and the mutual information is just I(x,y) =
H(y) − H(y|x) = H(y). Using a small, fixed bin size, we can approximate this
by the differential entropy,

H(y) = −
∫

p(y) log2 p(y)dy =
1
2

log2(e(2π)d
′
) +

1
2

log2 det(Cy) (6)

8Recall that Lagrange multipliers can be chosen in any way that results in a solution satisfying
the constraints.
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This is maximized by maximizing det(Cy) = det(WCW ′) over choice of W ,
subject to the constraint that the rows of W are orthonormal. The general so-
lution to this is W = UE, where U is an arbitrary d′ by d′ orthogonal matrix,
and where the rows of E ∈ Md′d are formed from the first d′ principal eigen-
vectors of C , and at the solution, det(Cy) is just the product of the first d′ prin-
cipal eigenvalues. Clearly, the choice of U does not affect the entropy, since
det(UECE′U ′) = det(U) det(ECE′) det(U ′) = det(ECE′). In the special
case where d′ = 1, so that E consists of a single, unit length vector e, we have
det(ECE′) = e′Ce, which is maximized by choosing e to be the principal eigen-
vector of C , as shown above. (The other extreme case, where d′ = d, is easy too,
since then det(ECE′) = det(C) and E can be any orthogonal matrix). We refer
the reader to (Wilks 1962) [51] for a proof for the general case 1 < d′ < d.

2.2 Probabilistic PCA (PPCA)

Suppose you’ve applied PCA to obtain low dimensional feature vectors for your
data, but that you have also somehow found a partition of the data such that the
PCA projections you obtain on each subset are quite different from those obtained
on the other subsets. It would be tempting to perform PCA on each subset and use
the relevant projections on new data, but how do you determine what is ’relevant’?
That is, how would you construct a mixture of PCA models? While several ap-
proaches to such mixtures have been proposed, the first such probabilistic model
was proposed by Tipping and Bishop [49, 48]. The advantages of a probabilistic
model are numerous: for example, the weight that each mixture component gives
to the posterior probability of a given data point can be computed, solving the
’relevance’ problem stated above. In this section we briefly review PPCA.
The approach is closely related to factor analysis, which itself is a classical dimen-
sional reduction technique. Factor analysis first appeared in the behavioral sciences
community a century ago, when Spearman hypothesised that intelligence could be
reduced to a single underlying factor [45]. If, given an n by n correlation matrix
between variables xi ∈ R, i = 1, · · · , n, there is a single variable g such that the
correlation between xi and xj vanishes for i �= j given the value of g, then g is the
underlying ’factor’ and the off-diagonal elements of the correlation matrix can be
written as the corresponding off-diagonal elements of zz′ for some z ∈ Rn [15].
Modern factor analysis usually considers a model where the underlying factors
x ∈ Rd′ are Gaussian, and where a Gaussian noise term ε ∈ Rd is added:

y = Wx + µ + ε (7)

x ∼ N (0,1)
ε ∼ N (0,Ψ)
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Here y ∈ Rd are the observations, the parameters of the model are W ∈ Mdd′

(d′ ≤ d), Ψ and µ, and Ψ is assumed to be diagonal. By construction, the y’s have
mean µ and ’model covariance’ WW′ + Ψ. For this model, given x, the vectors
y − µ become uncorrelated. Since x and ε are Gaussian distributed, so is y, and
so the maximum likelihood estimate of E[y] is just µ. However, in general, W
and Ψ must be estimated iteratively, using for example EM. There is an instructive
exception to this [3, 49]. Suppose that Ψ = σ21, that the d−d′ smallest eigenvalues
of the model covariance are the same and are equal to σ2, and that the sample
covariance S is equal to the model covariance (so that σ2 follows immediately
from the eigendecomposition of S). Let e(j) be the j’th orthonormal eigenvector
of S with eigenvalue λj . Then by considering the spectral decomposition of S it is

straightforward to show that Wij =
√

(λj − σ2)e(j)
i , i = 1, · · · , d, j = 1, · · · , d′,

if the e(j) are in principal order. The model thus arrives at the PCA directions, but
in a probabilistic way. Probabilistic PCA (PPCA) is a more general extension of
factor analysis: it assumes a model of the form (7) with Ψ = σ21, but it drops
the above assumption that the model and sample covariances are equal (which in
turn means that σ2 must now be estimated). The resulting maximum likelihood
estimates of W and σ2 can be written in closed form, as [49]

WML = U(Λ − σ21)R (8)

σ2
ML =

1
d − d′

d∑
i=d′+1

λi (9)

where U ∈ Mdd′ is the matrix of the d′ principal column eigenvectors of S, Λ is
the corresponding diagonal matrix of principal eigenvalues, and R ∈ Md′ is an
arbitrary orthogonal matrix. Thus σ2 captures the variance lost in the discarded
projections and the PCA directions appear in the maximum likelihood estimate of
W (and in fact re-appear in the expression for the expectation of x given y, in the
limit σ → 0, in which case the x become the PCA projections of the y). This closed
form result is rather striking in view of the fact that for general factor analysis we
must resort to an iterative algorithm. The probabilistic formulation makes PCA
amenable to a rich variety of probabilistic methods: for example, PPCA allows one
to perform PCA when some of the data is missing components; and d′ itself (which
so far we’ve assumed known) can itself be estimated using Bayesian arguments
[7]. Returning to the problem posed at the beginning of this Section, a mixture
of PPCA models, each with weight πi ≥ 0,

∑
i πi = 1, can be computed for

the data using maximum likelihood and EM, thus giving a principled approach to
combining several local PCA models [48].
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2.3 Kernel PCA

PCA is a linear method, in the sense that the reduced dimension representation is
generated by linear projections (although the eigenvectors and eigenvalues depend
non-linearly on the data), and this can severely limit the usefulness of the approach.
Several versions of nonlinear PCA have been proposed (see e.g. [18]) in the hope
of overcoming this problem. In this section we describe a more recent algorithm
called kernel PCA [43]. Kernel PCA relies on the “kernel trick”, which is the
following observation: suppose you have an algorithm (for example, k’th nearest
neighbour) which depends only on dot products of the data. Consider using the
same algorithm on transformed data: x → Φ(x) ∈ F , where F is a (possibly
infinite dimensional) vector space, which we will call feature space9. Operating in
F , your algorithm depends only on the dot products Φ(xi) · Φ(xj). Now suppose
there exists a (symmetric) ’kernel’ function k(xi,xj) such that for all xi, xj ∈ Rd,
k(xi,xj) = Φ(xi) · Φ(xj). Then since your algorithm depends only on these
dot products, you never have to compute Φ(x) explicitly; you can always just
substitute in the kernel form. This was first used by [1] in the theory of potential
functions, and burst onto the machine learning scene in [9], when it was applied to
support vector machines. Kernel PCA applies the idea to performing PCA in F .
It’s striking that, since projections are being performed in a space whose dimension
can be much larger than d, the number of useful such projections can actually
exceed d, so kernel PCA is aimed more at feature extraction than dimensional
reduction.
It’s not immediately obvious that PCA is eligible for the kernel trick, since in PCA
the data appears in expectations over products of individual components of vectors,
not over dot products between the vectors. However Schölkopf et al. [43] show
how the problem can indeed be cast entirely in terms of dot products. They make
two key observations: first, that the eigenvectors of the covariance matrix in F lie
in the span of the (centered) mapped data, and second, that therefore no informa-
tion in the eigenvalue equation is lost if the equation is replaced by m equations,
formed by taking the dot product of each side of the eigenvalue equation with each
(centered) mapped data point. Let’s see how this works. The covariance matrix of
the mapped data in feature space is

C ≡ 1
m

m∑
i=1

(Φi − µ)(Φi − µ)T (10)

where Φi ≡ Φ(xi) and µ ≡ 1
m

∑
i Φi. We are looking for eigenvector solutions

9In fact the method is more general: F can be any complete, normed vector space with inner
product (i.e. any Hilbert space), in which case the dot product in the above argument is replaced by
the inner product.
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v of
Cv = λv (11)

Since this can be written 1
m

∑m
i=1(Φi − µ)[(Φi − µ) · v] = λv, the eigenvectors

v lie in the span of the Φi − µ’s, or

v =
∑

i

αi(Φi − µ) (12)

for some αi. Since (both sides of) Eq. (11) lie in the span of the Φi − µ, we can
replace it with the m equations

(Φi − µ)T Cv = λ(Φi − µ)Tv (13)

Now consider the ’kernel matrix’ Kij , the matrix of dot products in F : Kij ≡
Φi · Φj , i, j = 1, . . . ,m. We know how to calculate this, given a kernel function
k, since Φi ·Φj = k(xi,xj). However, what we need is the centered kernel matrix,
KC

ij ≡ (Φi−µ)·(Φj−µ). Happily, any m by m dot product matrix can be centered
by left- and right- multiplying by the projection matrix P ≡ 1 − 1

mee′, where 1
is the unit matrix in Mm and where e is the m-vector of all ones (see Section 3.2
for further discussion of centering). Hence we have KC = PKP , and Eq. (13)
becomes

KCKCα = λ̄KCα (14)

where α ∈ Rm and where λ̄ ≡ mλ. Now clearly any solution of

KCα = λ̄α (15)

is also a solution of (14). It’s straightforward to show that any solution of (14) can
be written as a solution α to (15) plus a vector β which is orthogonal to α (and
which satisfies

∑
i βi(Φi − µ) = 0), and which therefore does not contribute to

(12); therefore we need only consider Eq. (15). Finally, to use the eigenvectors
v to compute principal components in F , we need v to have unit length, that is,
v · v = 1 = λ̄α · α, so the α must be normalized to have length 1/

√
λ̄.

The recipe for extracting the i’th principal component in F using kernel PCA is
therefore:

1. Compute the i’th principal eigenvector of KC , with eigenvalue λ̄.

2. Normalize the corresponding eigenvector, α, to have length 1/
√

λ̄.

3. For a training point xk, the principal component is then just

(Φ(xk) − µ) · v = λ̄αk (16)
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4. For a general test point x, the principal component is

(Φ(x) − µ) · v =
∑

i

αik(x,xi) − 1
m

∑
i,j

αik(x,xj)

− 1
m

∑
i,j

αik(xi,xj) +
1

m2

∑
i,j,n

αik(xj ,xn)

where the last two terms can be dropped since they don’t depend on x.

Kernel PCA may be viewed as a way of putting more effort into the up-front
computation of features, rather than putting the onus on the classifier or regres-
sion algorithm. Kernel PCA followed by a linear SVM on a pattern recognition
problem has been shown to give similar results to using a nonlinear SVM using
the same kernel [43]. It shares with other Mercer kernel methods the attractive
property of mathematical tractability and of having a clear geometrical interpreta-
tion: for example, this has led to using kernel PCA for de-noising data, by finding
that vector z ∈ Rd such that the Euclidean distance between Φ(z) and the vector
computed from the first few PCA components in F is minimized [34]. Classical
PCA has the significant limitation that it depends only on first and second mo-
ments of the data, whereas kernel PCA does not (for example, a polynomial kernel
k(xi,xj) = (xi · xj + b)p contains powers up to order 2p, which is particularly
useful for e.g. image classification, where one expects that products of several
pixel values will be informative as to the class). Kernel PCA has the computational
limitation of having to compute eigenvectors for square matrices of side m, but
again this can be addressed, for example by using a subset of the training data, or
by using the Nyström method for approximating the eigenvectors of a large Gram
matrix (see below).

2.4 Oriented PCA and Distortion Discriminant Analysis

Before leaving projective methods, we describe another extension of PCA, which
has proven very effective at extracting robust features from audio [11, 12]. We
first describe the method of oriented PCA (OPCA) [18]. Suppose we are given
a set of ’signal’ vectors xi ∈ Rd, i = 1, . . . ,m, where each xi represents an
undistorted data point, and suppose that for each xi, we have a set of N distorted
versions x̃k

i , k = 1, . . . , N . Define the corresponding ’noise’ difference vectors to
be zk

i ≡ x̃k
i − xi. Roughly speaking, we wish to find linear projections which are

as orthogonal as possible to the difference vectors, but along which the variance
of the signal data is simultaneously maximized. Denote the unit vectors defining
the desired projections by ni, i = 1, . . . , d′, ni ∈ Rd, where d′ will be chosen
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by the user. By analogy with PCA, we could construct a feature extractor n which
minimizes the mean squared reconstruction error 1

mN

∑
i,k(xi− x̂k

i )
2, where x̂k

i ≡
(x̃k

i · n)n. The n that solves this problem is that eigenvector of R1 − R2 with
largest eigenvalue, where R1, R2 are the correlation matrices of the xi and zi

respectively. However this feature extractor has the undesirable property that the
direction n will change if the noise and signal vectors are globally scaled with two
different scale factors. OPCA [18] solves this problem. The first OPCA direction
is defined as that direction n that maximizes the generalized Rayleigh quotient
[19, 18] q0 = n′C1n

n′C2n
, where C1 is the covariance matrix of the signal and C2 that of

the noise. For d′ directions collected into a column matrix N ∈ Mdd′ , we instead
maximize det(N ′C1N )

det(N ′C2N ) . For Gaussian data, this amounts to maximizing the ratio
of the volume of the ellipsoid containing the data, to the volume of the ellipsoid
containing the noise, where the volume is that lying inside an ellipsoidal surface
of constant probability density. We in fact use the correlation matrix of the noise
rather than the covariance matrix, since we wish to penalize the mean noise signal
as well as its variance (consider the extreme case of noise that has zero variance
but nonzero mean). Explicitly, we take

C ≡ 1
m

∑
i

(xi − E[x])(xi − E[x])′ (17)

R ≡ 1
mN

∑
i,k

zk
i (z

k
i )′ (18)

and maximize q = n′Cn
n′Rn , whose numerator is the variance of the projection of the

signal data along the unit vector n, and whose denominator is the projected mean
squared “error” (the mean squared modulus of all noise vectors zki projected along
n). We can find the directions nj by setting ∇q = 0, which gives the general-
ized eigenvalue problem Cn = qRn; those solutions are also the solutions to the
problem of maximizing det(N ′CN )

det(N ′RN ) . If R is not of full rank, it must be regularized
for the problem to be well-posed. It is straightforward to show that, for positive
semidefinite C , R, the generalized eigenvalues are positive, and that scaling ei-
ther the signal or the noise leaves the OPCA directions unchanged, although the
eigenvalues will change. Furthermore the ni are, or may be chosen to be, linearly
independent, and although the ni are not necessarily orthogonal, they are conjugate
with respect to both matrices C and R, that is, n′iCnj ∝ δij , n′

iRnj ∝ δij . Finally,
OPCA is similar to linear discriminant analysis [19], but where each signal point
xi is assigned its own class.
’Distortion discriminant analysis’ [11, 12] uses layers of OPCA projectors both to
reduce dimensionality (a high priority for audio or video data) and to make the
features more robust. The above features, computed by taking projections along
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the n’s, are first translated and normalized so that the signal data has zero mean
and the noise data has unit variance. For the audio application, for example, the
OPCA features are collected over several audio frames into new ’signal’ vectors,
the corresponding ’noise’ vectors are measured, and the OPCA directions for the
next layer found. This has the further advantage of allowing different types of
distortion to be penalized at different layers, since each layer corresponds to a
different time scale in the original data (for example, a distortion that results from
comparing audio whose frames are shifted in time to features extracted from the
original data - ’alignment noise’ - can be penalized at larger time scales).

3 Manifold Modeling

In Section 2 we gave an example of data with a particular geometric structure which
would not be immediately revealed by examining one dimensional projections in
input space10. How, then, can such underlying structure be found? This section
outlines some methods designed to accomplish this. However we first describe
the Nyström method (hereafter simply abbreviated ’Nyström’), which provides a
thread linking several of the algorithms described in this review.

3.1 The Nyström method

Suppose that K ∈ Mn and that the rank of K is r � n. Nyström gives a way
of approximating the eigenvectors and eigenvalues of K using those of a small
submatrix A. If A has rank r, then the decomposition is exact. This is a powerful
method that can be used to speed up kernel algorithms [53], to efficiently extend
some algorithms (described below) to out-of-sample test points [5], and in some
cases, to make an otherwise infeasible algorithm feasible [20]. In this section only,
we adopt the notation that matrix indices refer to sizes unless otherwise stated, so
that e.g. Amm means that A ∈ Mm.

3.1.1 Original Nyström

The Nyström method originated as a method for approximating the solution of
Fredholm integral equations of the second kind [38]. Let’s consider the homoge-
neous d-dimensional form with density p(x), x ∈ Rd. This family of equations

10Although in that simple example, the astute investigator would notice that all her data vectors
have the same length, and conclude from the fact that the projected density is independent of projec-
tion direction that the data must be uniformly distributed on the sphere.
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has the form ∫
k(x,y)u(y)p(y)dy = λu(x) (19)

The integral is approximated using the quadrature rule [38]

λu(x) ≈ 1
m

m∑
i=1

k(x,xi)u(xi) (20)

which when applied to the sample points becomes a matrix equation Kmmum =
mλum (with components Kij ≡ K(xi,xj) and ui ≡ u(xi)). This eigensystem
is solved, and the value of the integral at a new point x is approximated by using
(20), which gives a much better approximation that using simple interpolation [38].
Thus, the original Nyström method provides a way to smoothly approximate an
eigenfunction u, given its values on a sample set of points. If a different number
m′ of elements in the sum are used to approximate the same eigenfunction, the
matrix equation becomes Km′m′um′ = m′λum′ so the corresponding eigenvalues
approximately scale with the number of points chosen. Note that we have not
assumed that K is symmetric or positive semidefinite; however from now on we
will assume that K is positive semidefinite.

3.1.2 Exact Nyström Eigendecomposition

Suppose that K̃mm has rank r < m. Since it’s positive semidefinite it is a Gram
matrix and can be written as K̃ = ZZ ′ where Z ∈ Mmr and Z is also of rank r
[29]. Order the row vectors in Z so that the first r are linearly independent: this
just reorders rows and columns in K̃ to give K, but in such a way that K is still a
(symmetric) Gram matrix. Then the principal submatrix A ∈ Sr of K (which itself
is the Gram matrix of the first r rows of Z) has full rank. Now letting n ≡ m − r,
write the matrix K as

Kmm ≡
[

Arr Brn

B′
nr Cnn

]
(21)

Since A is of full rank, the r rows
[

Arr Brn

]
are linearly independent, and

since K is of rank r, the n rows
[

B′
nr Cnn

]
can be expanded in terms of them,

that is, there exists Hnr such that[
B′

nr Cnn

]
= Hnr

[
Arr Brn

]
(22)
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The first r columns give H = B′A−1, and the last n columns then give C =
B′A−1B. Thus K must be of the form11

Kmm =
[

A B
B′ B′A−1B

]
=
[

A
B′

]
mr

A−1
rr

[
A B

]
rm

(23)

The fact that we’ve been able to write K in this ’bottleneck’ form suggests that it
may be possible to construct the exact eigendecomposition of Kmm (for its non-
vanishing eigenvalues) using the eigendecomposition of a (possibly much smaller)
matrix in Mr, and this is indeed the case [20]. First use the eigendecomposition
of A, A = UΛU ′, where U is the matrix of column eigenvectors of A and Λ the
corresponding diagonal matrix of eigenvalues, to rewrite this in the form

Kmm =
[

U
B′UΛ−1

]
mr

Λrr

[
U Λ−1U ′B

]
rm

≡ DΛD′ (24)

This would be exactly what we want (dropping all eigenvectors whose eigenvalues
vanish), if the columns of D were orthogonal, but in general they are not. It is
straightforward to show that, if instead of diagonalizing A we diagonalize Qrr ≡
A + A−1/2BB′A−1/2 ≡ UQΛQU ′

Q, then the desired matrix of orthogonal column
eigenvectors is

Vmr ≡
[

A
B′

]
A−1/2UQΛ−1/2

Q (25)

(so that Kmm = V ΛQV ′ and V ′V = 1rr) [20].
Although this decomposition is exact, this last step comes at a price: to obtain the
correct eigenvectors, we had to perform an eigendecomposition of the matrix Q
which depends on B. If our intent is to use this decomposition in an algorithm in
which B changes when new data is encountered (for example, an algorithm which
requires the eigendecomposition of a kernel matrix constructed from both train and
test data), then we must recompute the decomposition each time new test data is
presented. If instead we’d like to compute the eigendecomposition just once, we
must approximate.

3.1.3 Approximate Nyström Eigendecomposition

Two kinds of approximation naturally arise. The first occurs if K is only approxi-
mately low rank, that is, its spectrum decays rapidly, but not to exactly zero. In this

11It’s interesting that this can be used to perform ’kernel completion’, that is, reconstruction of a
kernel with missing values; for example, suppose K has rank 2 and that its first two rows (and hence
columns) are linearly independent, and suppose that K has met with an unfortunate accident that has
resulted in all of its elements, except those in the first two rows or columns, being set equal to zero.
Then the original K is easily regrown using C = B′A−1B.
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case, B′A−1B will only approximately equal C above, and the approximation can
be quantified as

∥∥C − B′A−1B
∥∥ for some matrix norm ‖·‖, where the difference

is known as the Schur complement of A for the matrix K [24].
The second kind of approximation addresses the need to compute the eigendecom-
position just once, to speed up test phase. The idea is simply to take Equation
(20), sum over d elements on the right hand side where d � m and d > r, and
approximate the eigenvector of the full kernel matrix Kmm by evaluating the left
hand side at all m points [53]. Empirically it has been observed that choosing d
to be some small integer factor larger than r works well [36]. How does using
(20) correspond to the expansion in (24), in the case where the Schur complement
vanishes? Expanding A, B in their definition in Eq. (21) to Add, Bdn, so that Udd

contains the column eigenvectors of A and Umd contains the approximated (high
dimensional) column eigenvectors, (20) becomes

UmdΛdd ≈ KmdUdd =
[

A
B′

]
Udd =

[
UΛdd

B′Udd

]
(26)

so multiplying by Λ−1
dd from the right shows that the approximation amounts to

taking the matrix D in (24) as the approximate column eigenvectors: in this sense,
the approximation amounts to dropping the requirement that the eigenvectors be
exactly orthogonal.
We end with the following observation [53]: the expression for computing the pro-
jections of a mapped test point along principal components in a kernel feature space
is, apart from proportionality constants, exactly the expression for the approximate
eigenfunctions evaluated at the new point, computed according to (20). Thus the
computation of the kernel PCA features for a set of points can be viewed as using
the Nyström method to approximate the full eigenfunctions at those points.

3.2 Multidimensional Scaling

We begin our look at manifold modeling algorithms with multidimensional scaling
(MDS), which arose in the behavioral sciences [8]. MDS starts with a measure of
dissimilarity between each pair of data points in the dataset (note that this measure
can be very general, and in particular can allow for non-vectorial data). Given this,
MDS searches for a mapping of the (possibly further transformed) dissimilarities
to a low dimensional Euclidean space such that the (transformed) pair-wise dissim-
ilarities become squared distances. The low dimensional data can then be used for
visualization, or as low dimensional features.
We start with the fundamental theorem upon which ’classical MDS’ is built (in
classical MDS, the dissimilarities are taken to be squared distances and no further
transformation is applied [14]). We give a detailed proof because it will serve to
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illustrate a recurring theme. Let e be the column vector of m ones. Consider the
’centering’ matrix Pe ≡ 1 − 1

mee′. Let X be the matrix whose rows are the
datapoints x ∈ Rn, X ∈ Mmn. Since ee′ ∈ Mm is the matrix of all ones, PeX
subtracts the mean vector from each row x in X (hence the name ’centering’),
and in addition, Pee = 0. In fact e is the only eigenvector (up to scaling) with
eigenvalue zero, for suppose Pef = 0 for some f ∈ Rm. Then each component
of f must be equal to the mean of all the components of f , so all components of
f are equal. Hence Pe has rank m − 1, and Pe projects onto the subspace Rm−1

orthogonal to e.
By a ’distance matrix’ we will mean a matrix whose ij’th element is ‖xi − xj‖2

for some xi, xj ∈ Rd, for some d, where ‖·‖ is the Euclidean norm. Notice
that the elements are squared distances, despite the name. Pe can also be used
to center both Gram matrices and distance matrices. We can see this as follows.
Let [C(i, j)] be that matrix whose ij’th element is C(i, j). Then Pe[xi · xj]P e =
P eXX ′P e = (P eX)(P eX)′ = [(xi−µ) ·(xj −µ)]. In addition, using this result,
P e[‖xi−xj‖2]P e = P e[‖xi‖2eiej +‖xj‖2eiej−2xi ·xj ]P e = −2P exi ·xjP

e =
−2[(xi − µ) · (xj − µ)].
For the following theorem, the earliest form of which is due to Schoenberg [40],
we first note that, for any A ∈ Mm, and letting Q ≡ 1

mee′,

P eAP e = {(1 − Q)A(1 − Q)}ij = Aij − AR
ij − AC

ij + ARC
ij (27)

where AC ≡ AQ is the matrix A with each column replaced by the column mean,
AR ≡ QA is A with each row replaced by the row mean, and ARC ≡ QAQ is A
with every element replaced by the mean of all the elements.

Theorem: Consider the class of symmetric matrices A ∈ Sn such that Aij ≥ 0 and
Aii = 0 ∀i, j. Then Ā ≡ −P eAP e is positive semidefinite if and only if A is a
distance matrix (with embedding space Rd for some d). Given that A is a distance
matrix, the minimal embedding dimension d is the rank of Ā, and the embedding
vectors are any set of Gram vectors of Ā, scaled by a factor of 1√

2
.

Proof: Assume that A ∈ Sm, Aij ≥ 0 and Aii = 0 ∀i, and that Ā is positive
semidefinite. Since Ā is positive semidefinite it is also a Gram matrix, that is,
there exist vectors xi ∈ Rm, i = 1, · · · ,m such that Āij = xi · xj . Introduce
yi = 1√

2
xi. Then from Eq. (27),

Āij = (−P eAP e)ij = xi · xj = −Aij + AR
ij + AC

ij − ARC
ij (28)

so that

2(yi − yj)2 ≡ (xi − xj)2 = AR
ii + AC

ii − ARC
ii + AR

jj + AC
jj − ARC

jj

−2(−Aij + AR
ij + AC

ij − ARC
ij )
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= 2Aij (29)

using Aii = 0, AR
ij = AR

jj , AC
ij = AC

ii , and from the symmetry of A, AR
ij = AC

ji.
Thus A is a distance matrix with embedding vectors yi. Now consider a matrix
A ∈ Sn that is a distance matrix, so that Aij = (yi − yj)2 for some yi ∈ Rd for
some d, and let Y be the matrix whose rows are the yi. Then since each row and
column of P e sums to zero, we have Ā = −(P eAP e) = 2(P eY )(P eY )′, hence
Ā is positive semidefinite. Finally, given a distance matrix Aij = (yi − yj)2, we
wish to find the dimension of the minimal embedding Euclidean space. First note
that we can assume that the yi have zero mean (

∑
i yi = 0), since otherwise we

can subtract the mean from each yi without changing A. Then Āij = xi ·xj , again
introducing xi ≡

√
2yi, so the embedding vectors yi are a set of Gram vectors of

Ā, scaled by a factor of 1√
2
. Now let r be the rank of Ā. Since Ā = XX ′, and

since rank(XX′) = rank(X) for any real matrix X [29], and since rank(X) is the
number of linearly independent xi, the minimal embedding space for the xi (and
hence for the yi) has dimension r. �

3.2.1 General Centering

Is P e the most general matrix that will convert a distance matrix into a matrix of
dot products? Since the embedding vectors are not unique (given a set of Gram
vectors, any global orthogonal matrix applied to that set gives another set that gen-
erates the same positive semidefinite matrix), it’s perhaps not surprising that the
answer is no. A distance matrix is an example of a conditionally negative defi-
nite (CND) matrix. A CND matrix D ∈ Sm is a symmetric matrix that satisfies∑

i,j aiajDij ≤ 0 ∀{ai ∈ R :
∑

i ai = 0}; the class of CND matrices is a superset
of the class of negative semidefinite matrices [6]. Defining the projection matrix
P c ≡ (1−ec′), for any c ∈ Rm such that e′c = 1, then for any CND matrix D, the
matrix −P cDP ′c is positive semidefinite (and hence a dot product matrix) [41, 6]
(note that P c is not necessarily symmetric). This is straightforward to prove: for
any z ∈ Rm, P ′cz = (1 − ce′)z = z − c(

∑
a za), so

∑
i(P

′cz)i = 0, hence
(P ′cz)′D(P ′cz) ≤ 0 from the definition of CND. Hence we can map a distance
matrix D to a dot product matrix K by using Pc in the above manner for any set
of numbers ci that sum to unity.

3.2.2 Constructing the Embedding

To actually find the embedding vectors for a given distance matrix, we need to
know how to find a set of Gram vectors for a positive semidefinite matrix Ā. Let
E be the matrix of column eigenvectors e(α) (labeled by α), ordered by eigenvalue
λα, so that the first column is the principal eigenvector, and ĀE = EΛ, where
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Λ is the diagonal matrix of eigenvalues. Then Āij =
∑

α λαe
(α)
i e

(α)
j . The rows

of E form the dual (orthonormal) basis to e
(α)
i , which we denote ẽ

(i)
α . Then we

can write Āij =
∑

α(
√

λαẽ
(i)
α )(

√
λαẽ

(i)
α ). Hence the Gram vectors are just the

dual eigenvectors with each component scaled by
√

λα. Defining the matrix Ẽ ≡
EΛ1/2, we see that the Gram vectors are just the rows of Ẽ.
If Ā ∈ Sn has rank r ≤ n, then the final n − r columns of Ẽ will be zero, and we
have directly found the r-dimensional embedding vectors that we are looking for.
If Ā ∈ Sn is full rank, but the last n−p eigenvalues are much smaller than the first
p, then it’s reasonable to approximate the i’th Gram vector by its first p components√

λαẽ(i)
α , α = 1, · · · , p, and we have found a low dimensional approximation to

the y’s. This device - projecting to lower dimensions by lopping off the last few
components of the dual vectors corresponding to the (possibly scaled) eigenvectors
- is shared by MDS, Laplacian eigenmaps, and spectral clustering (see below). Just
as for PCA, where the quality of the approximation can be characterized by the
unexplained variance, we can characterize the quality of the approximation here
by the squared residuals. Let Ā have rank r, and suppose we only keep the first
p ≤ r components to form the approximate embedding vectors. Then denoting the
approximation with a hat, the summed squared residuals are

m∑
i=1

‖ŷi − yi‖2 =
1
2

m∑
i=1

‖x̂i − xi‖2

=
1
2

m∑
i=1

p∑
a=1

λaẽ
(i)2
a +

1
2

m∑
i=1

r∑
a=1

λaẽ
(i)2
a −

m∑
i=1

p∑
a=1

λaẽ
(i)2
a

but
∑m

i=1 ẽ
(i)2
a =

∑m
i=1 e

(a)2
i = 1, so

m∑
i=1

‖ŷi − yi‖2 =
1
2

(
r∑

a=1

λa −
p∑

a=1

λa

)
=

r∑
a=p+1

λa (30)

Thus the fraction of ’unexplained residuals’ is
∑r

a=p+1 λa/
∑r

a=1 λa, in analogy
to the fraction of ’unexplained variance’ in PCA.
If the original symmetric matrix A is such that Ā is not positive semidefinite, then
by the above theorem there exist no embedding points such that the dissimilarities
are distances between points in some Euclidean space. In that case, we can pro-
ceed by adding a sufficiently large positive constant to the diagonal of Ā, or by
using the closest positive semidefinite matrix, in Frobenius norm12, to Ā, which is

12The only proof I have seen for this assertion is due to Frank McSherry, Microsoft Research.
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Â ≡∑α:λα>0 λαe(α)e(α)′ . Methods such as classical MDS, that treat the dissim-
ilarities themselves as (approximate) squared distances, are called metric scaling
methods. A more general approach - ’non-metric scaling’ - is to minimize a suit-
able cost function of the difference between the embedded squared distances, and
some monotonic function of the dissimilarities [14]; this allows for dissimilari-
ties which do not arise from a metric space; the monotonic function, and other
weights which are solved for, are used to allow the dissimilarities to nevertheless
be represented approximately by low dimensional squared distances. An example
of non-metric scaling is ordinal MDS, whose goal is to find points in the low di-
mensional space so that the distances there correctly reflect a given rank ordering
of the original data points.

3.2.3 Landmark MDS

MDS is computationally expensive: since the distances matrix is not sparse, the
computational complexity of the eigendecomposition is O(m3). This can be sig-
nificantly reduced by using a method called Landmark MDS (LMDS) [16]. In
LMDS the idea is to choose q points, called ’landmarks’, where q > r (where r is
the rank of the distance matrix), but q � m, and to perform MDS on landmarks,
mapping them to Rd. The remaining points are then mapped to Rd using only
their distances to the landmark points (so in LMDS, the only distances considered
are those to the set of landmark points). As first pointed out in [5] and explained
in more detail in [37], LMDS combines MDS with the Nyström algorithm. Let
E ∈ Sq be the matrix of landmark distances and U (Λ) the matrix of eigenvec-
tors (eigenvalues) of the corresponding kernel matrix A ≡ −1

2P cEP ′c, so that
the embedding vectors of the landmark points are the first d elements of the rows
of UΛ1/2. Now, extending E by an extra column and row to accommodate the
squared distances from the landmark points to a test point, we write the extended
distance matrix and corresponding kernel as

D =
[

E f
f ′ g

]
, K ≡ −1

2
P cDP ′c =

[
A b
b′ c

]
(31)

Then from Eq. (24) we see that the Nyström method gives the approximate column
eigenvectors for the extended system as[

U
b′UΛ−1

]
(32)

Thus the embedding coordinates of the test point are given by the first d elements
of the row vector b′UΛ−1/2. However, we only want to compute U and Λ once -
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they must not depend on the test point. Platt [37] has pointed out that this can be
accomplished by choosing the centering coefficients ci in P c ≡ 1 − ec′ such that
ci = 1/q for i ≤ q and cq+1 = 0: in that case, since

Kij = −1
2

⎛
⎝Dij − ei(

q+1∑
k=1

ckDkj) − ej(
q+1∑
k=1

Dikck) + eiej(
q+1∑

k,m=1

ckDkmcm)

⎞
⎠

the matrix A (found by limiting i, j to 1, . . . , q above) depends only on the ma-
trix E above. Finally, we need to relate b back to the measured quantities - the
vector of squared distances from the test point to the landmark points. Using
bi = (−1

2P cDP ′c)q+1,i, i = 1, · · · , q, we find that

bk = −1
2

⎡
⎣Dq+1,k − 1

q

q∑
j=1

Dq+1,jek − 1
q

q∑
i=1

Dik +
1
q2

⎛
⎝ q∑

i,j=1

Dij

⎞
⎠ ek

⎤
⎦

The first term in the square brackets is the vector of squared distances from the test
point to the landmarks, f . The third term is the row mean of the landmark distance
squared matrix, Ē. The second and fourth terms are proportional to the vector of all
ones e, and can be dropped13 since U ′e = 0. Hence, modulo terms which vanish
when constructing the embedding coordinates, we have b � −1

2(f − Ē), and
the coordinates of the embedded test point are 1

2Λ−1/2U ′(Ē − f); this reproduces
the form given in [16]. Landmark MDS has two significant advantages: first, it
reduces the computational complexity from O(m3) to O(q3 + q2(m− q) = q2m);
and second, it can be applied to any non-landmark point, and so gives a method of
extending MDS (using Nyström) to out-of-sample data.

3.3 Isomap

MDS is valuable for extracting low dimensional representations for some kinds
of data, but it does not attempt to explicitly model the underlying manifold. Two
methods that do directly model the manifold are Isomap and Locally Linear Em-
bedding. Suppose that as in Section 2.1.1, again unbeknownst to you, your data lies
on a curve, but in contrast to Section 2.1.1, the curve is not a straight line; in fact
it is sufficiently complex that the minimal embedding space Rd that can contain
it has high dimension d. PCA will fail to discover the one dimensional structure
of your data; MDS will also, since it attempts to faithfully preserve all distances.

13The last term can also be viewed as an unimportant shift in origin; in the case of a single test
point, so can the second term, but we cannot rely on this argument for multiple test points, since the
summand in the second term depends on the test point.
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Isomap (isometric feature map) [47], on the other hand, will succeed. The key
assumption made by Isomap is that the quantity of interest, when comparing two
points, is the distance along the curve between the two points; if that distance is
large, it is to be taken, even if in fact the two points are close in Rd (this example
also shows that noise must be handled carefully). The low dimensional space can
have more than one dimension: [47] gives an example of a 5 dimensional mani-
fold embedded in a 50 dimensional space. The basic idea is to construct a graph
whose nodes are the data points, where a pair of nodes are adjacent only if the two
points are close in Rd, and then to approximate the geodesic distance along the
manifold between any two points as the shortest path in the graph, computed using
the Floyd algorithm [25]; and finally to use MDS to extract the low dimensional
representation (as vectors in Rd′ , d′ � d) from the resulting matrix of squared
distances (Tenenbaum [47] suggests using ordinal MDS, rather than metric MDS,
for robustness).
Isomap shares with the other manifold mapping techniques we describe the prop-
erty that it does not provide a direct functional form for the mapping I : Rd → Rd′

that can simply be applied to new data, so computational complexity of the algo-
rithm is an issue in test phase. The eigenvector computation is O(m3), and the
Floyd algorithm also O(m3), although the latter can be reduced to O(hm2 log m)
where h is a heap size [16]. Landmark Isomap simply employs landmark MDS
[16] to addresses this problem, computing all distances as geodesic distances to the
landmarks. This reduces the computational complexity to O(q2m) for the LMDS
step, and to O(hqm log m) for the shortest path step.

3.4 Locally Linear Embedding

Locally linear embedding (LLE) [39] models the manifold by treating it as a union
of linear patches, in analogy to using coordinate charts to parameterize a manifold
in differential geometry. Suppose that each point xi ∈ Rd has a small number
of close neighbours indexed by the set N (i), and let yi ∈ Rd′ be the low dimen-
sional representation of xi. The idea is to express each xi as a linear combination
of its neighbours, and then construct the yi so that they can be expressed as the
same linear combination of their corresponding neighbours (the latter also indexed
by N (i)). To simplify the discussion let’s assume that the number of the neigh-
bours is fixed to n for all i. The condition on the x’s can be expressed as finding
that W ∈ Mmn that minimizes the sum of the reconstruction errors,

∑
i ‖xi −∑

j∈N (i) Wijxj‖2. Each reconstruction error Ei ≡ ‖xi−
∑

j∈N (i) Wijxj‖2 should

be unaffected by any global translation xi → xi + δ, δ ∈ Rd, which gives the
condition

∑
j∈N (i) Wij = 1 ∀i. Note that each Ei is also invariant to global ro-

tations and reflections of the coordinates. Thus the objective function we wish to
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minimize is

F ≡
∑

i

Fi ≡
∑

i

⎛
⎝1

2
‖xi −

∑
j∈N (i)

Wijxj‖2 − λi

⎛
⎝ ∑

j∈N (i)

Wij − 1

⎞
⎠
⎞
⎠

where the constraints are enforced with Lagrange multipliers λi [10]. Since the
sum splits into independent terms we can minimize each Fi separately. Thus fixing
i and letting x ≡ xi, v ∈ Rn, vj ≡ Wij , and λ ≡ λi, and introducing the matrix
C ∈ Sn, Cjk ≡ xj · xk, j, k ∈ N (i), and the vector b ∈ Rn, bj ≡ x · xj ,
j ∈ N (i), then requiring that the derivative of Fi with respect to vj vanishes
gives v = C−1(λe + b). Imposing the constraint e′v = 1 then gives λ = (1 −
e′C−1b)/(e′C−1e). Thus W can be found by applying this for each i.
Given the W ’s, the second step is to find a set of yi ∈ Rd′ that can be expressed
in terms of each other in the same manner. Again no exact solution may exist and
so
∑

i ‖yi −
∑

j∈N (i) Wijyj‖2 is minimized with respect to the y’s, keeping the
W ’s fixed. Let Y ∈ Mmd′ be the matrix of row vectors of the points y. The
authors of [39] enforce the condition that the y’s span a space of dimension d′ by
requiring that (1/m)Y ′Y = 1, although any condition of the form Y ′PY = Z
where P ∈ Sm and Z ∈ Sd′ is of full rank would suffice (see Section 3.5.1).
The origin is arbitrary; the corresponding degree of freedom can be removed by
requiring that the y’s have zero mean, although in fact this need not be explicitly
imposed as a constraint on the optimization, since the set of solutions can easily
be chosen to have this property. The rank constraint requires that the y’s have unit
covariance; this links the variables so that the optimization no longer decomposes
into m separate optimizations: introducing Lagrange multipliers λαβ to enforce
the constraints, the objective function to be minimized is

F =
1
2

∑
i

‖yi −
∑

j

Wijyj‖2 − 1
2

∑
αβ

λαβ

(∑
i

1
m

YiαYiβ − δαβ

)
(33)

where for convenience we treat the W ’s as matrices in Mm, where Wij ≡ 0 for
j /∈ N (i). Taking the derivative with respect to Ykδ and choosing λαβ = λαδαβ ≡
Λαβ gives8 the matrix equation

(1 − W )′(1 − W )Y =
1
m

Y Λ (34)

Since (1 − W )′(1 − W ) ∈ Sm, its eigenvectors are, or can be chosen to be,
orthogonal; and since (1 − W )′(1 − W )e = 0, choosing the columns of Y to
be the next d′ eigenvectors of (1 − W )′(1 − W ) with the smallest eigenvalues
guarantees that the y are zero mean (since they are orthogonal to e). We can also
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scale the y so that the columns of Y are orthonormal, thus satisfying the covariance
constraint Y ′Y = 1. Finally, the lowest-but-one weight eigenvectors are chosen
because their corresponding eigenvalues sum to m

∑
i ‖yi −

∑
j Wijyj‖2, as can

be seen by applying Y ′ to the left of (34).
Thus, LLE requires a two-step procedure. The first step (finding the W ’s) has
O(n3m) computational complexity; the second requires eigendecomposing the
product of two sparse matrices in Mm. LLE has the desirable property that it
will result in the same weights W if the data is scaled, rotated, translated and / or
reflected.

3.5 Graphical Methods

In this section we review two interesting methods that connect with spectral graph
theory. Let’s start by defining a simple mapping from a dataset to an undirected
graph G by forming a one-to-one correspondence between nodes in the graph and
data points. If two nodes i, j are connected by an arc, associate with it a positive
arc weight Wij , W ∈ Sm, where Wij is a similarity measure between points xi

and xj . The arcs can be defined, for example, by the minimum spanning tree, or by
forming the N nearest neighbours, for N sufficiently large. The Laplacian matrix
for any weighted, undirected graph is defined [13] by L ≡ D−1/2LD−1/2, where
Lij ≡ Dij − Wij and where Dij ≡ δij(

∑
k Wik). We can see that L is positive

semidefinite as follows: for any vector z ∈ Rm, since Wij ≥ 0,

0 ≤ 1
2

∑
i,j

(zi − zj)2Wij =
∑

i

z2
i Dii −

∑
i,j

ziWijzj = z′Lz

and since L is positive semidefinite, so is the Laplacian. Note that L is never posi-
tive definite since the vector of all ones, e, is always an eigenvector with eigenvalue
zero (and similarly LD1/2e = 0).
Let G be a graph and m its number of nodes. For Wij ∈ {0, 1}, the spectrum
of G (defined as the set of eigenvalues of its Laplacian) characterizes its global
properties [13]: for example, a complete graph (that is, one for which every node
is adjacent to every other node) has a single zero eigenvalue, and all other eigen-
values are equal to m

m−1 ; if G is connected but not complete, its smallest nonzero
eigenvalue is bounded above by unity; the number of zero eigenvalues is equal to
the number of connected components in the graph, and in fact the spectrum of a
graph is the union of the spectra of its connected components; and the sum of the
eigenvalues is bounded above by m, with equality iff G has no isolated nodes. In
light of these results, it seems reasonable to expect that global properties of the
data - how it clusters, or what dimension manifold it lies on - might be captured by
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properties of the Laplacian. The following two approaches leverage this idea. We
note that using similarities in this manner results in local algorithms: since each
node is only adjacent to a small set of similar nodes, the resulting matrices are
sparse and can therefore be eigendecomposed efficiently.

3.5.1 Laplacian Eigenmaps

The Laplacian eigenmaps algorithm [4] uses Wij = exp−‖xi−xj‖2/2σ2
. Let y(x) ∈

Rd′ be the embedding of sample vector x ∈ Rd, and let Yij ∈ Mmd′ ≡ (yi)j . We
would like to find y’s that minimize

∑
i,j ‖yi − yj‖2 Wij , since then if two points

are similar, their y’s will be close, whereas if W ≈ 0, no restriction is put on their
y’s. We have:∑

i,j

‖yi − yj‖2 Wij = 2
∑
i,j,a

(yi)a(yj)a(Diiδij − Wij) = 2Tr(Y ′LY ) (35)

In order to ensure that the target space has dimension d′ (minimizing (35) alone
has solution Y = 0), we require that Y have rank d. Any constraint of the form
Y ′PY = Z , where P ∈ Sm and m ≥ d′, will suffice, provided that Z ∈ Sd′

is of full rank. This can be seen as follows: since the rank of Z is d′ and since
the rank of a product of matrices is bounded above by the rank of each, we have
that d′ = rank(Z) = rank(Y ′PY ) ≤ min(rank((Y ′), rank(P ), rank(Y )),
and so rank(Y ) ≥ d′; but since Y ∈ Mmd′ and d′ ≤ m, the rank of Y is
at most d′; hence rank(Y ) = d′. However, minimizing Tr(Y ′LY ) subject to
the constraint Y ′DY = 1 results in the simple generalized eigenvalue problem
Ly = λDy [4]. It’s useful to see how this arises: we wish to minimize Tr(Y ′LY )
subject to the d′(d′ + 1)/2 constraints Y ′DY = 1. Let a, b = 1, . . . , d and
i, j = 1, . . . ,m. Introducing (symmetric) Lagrange multipliers λab [10] leads
to the objective function

∑
i,j,a yiaLijyja − ∑i,j,a,b λab(yiaDijyjb − δab), with

extrema at
∑

j Lkjyjβ =
∑

α,i λαβDkiyiα. We choose8 λαβ ≡ λβδαβ , giving∑
j Lkjyjα =

∑
i λαDkiyiα. This is a generalized eigenvector problem with

eigenvectors the columns of Y . Hence once again the low dimensional vectors are
constructed from the first few components of the dual eigenvectors, except that in
this case, the eigenvectors with lowest eigenvalues are chosen (omitting the eigen-
vector e), and in contrast to MDS, they are not weighted by the square roots of the
eigenvalues. Thus Laplacian eigenmaps must use some other criterion for deciding
on what d′ should be. Finally, note that the y’s are conjugate with respect to D (as
well as L), so we can scale them so that the constraints Y ′DY = 1 are indeed met,
and our drastic simplification of the Lagrange multipliers did no damage; and left
multiplying the eigenvalue equation by y′α shows that λα = y′

αLyα, so choosing
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the smallest eigenvalues indeed gives the lowest values of the objective function,
subject to the constraints.

3.5.2 Spectral Clustering

Although spectral clustering is a clustering method, it is very closely related to
dimensional reduction. In fact, since clusters may be viewed as large scale struc-
tural features of the data, any dimensional reduction technique that maintains these
structural features will be a good preprocessing step prior to clustering, to the point
where very simple clustering algorithms (such as K-means) on the preprocessed
data can work well [44, 33, 35]. If a graph is partitioned into two disjoint sets by
removing a set of arcs, the cut is defined as the sum of the weights of the removed
arcs. Given the mapping of data to graph defined above, a cut defines a split of the
data into two clusters, and the minimum cut encapsulates the notion of maximum
dissimilarity between two clusters. However finding a minimum cut tends to just
lop off outliers, so [44] define a normalized cut, which is now a function of all the
weights in the graph, but which penalizes cuts which result in a subgraph g such
that the cut divided by the sum of weights from g to G is large; this solves the
outlier problem. Now suppose we wish to divide the data into two clusters. Define
a scalar on each node, zi, i = 1, . . . ,m, such that zi = 1 for nodes in one cluster
and zi = −1 for nodes in the other. The solution to the normalized mincut problem
is given by [44]

min
y

y′Ly
y′Dy

such that yi ∈ {1,−b} and y′De = 0 (36)

where y ≡ (e + z) + b(e − z), and b is a constant that depends on the partition.
This problem is solved by relaxing y to take real values: the problem then be-
comes finding the second smallest eigenvector of the generalized eigenvalue prob-
lem Ly = λDy (the constraint y′De = 0 is automatically satisfied by the solu-
tions), which is exactly the same problem found by Laplacian eigenmaps (in fact
the objective function used by Laplacian eigenmaps was proposed as Eq. (10) in
[44]). The algorithms differ in what they do next. The clustering is achieved by
thresholding the element yi so that the nodes are split into two disjoint sets. The
dimensional reduction is achieved by treating the element yi as the first component
of a reduced dimension representation of the sample xi. There is also an interesting
equivalent physical interpretation, where the arcs are springs, the nodes are masses,
and the y are the fundamental modes of the resulting vibrating system [44]. Meila
and Shi [33] point out that that matrix P ≡ D−1L is stochastic, which motivates
the interpretation of spectral clustering as the stationary distribution of a Markov
random field: the intuition is that a random walk, once in one of the mincut clusters,
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tends to stay in it. The stochastic interpretation also provides tools to analyse the
thresholding used in spectral clustering, and a method for learning the weights Wij

based on training data with known clusters [33]. The dimensional reduction view
also motivates a different approach to clustering, where instead of simply cluster-
ing by thresholding a single eigenvector, simple clustering algorithms are applied
to the low dimensional representation of the data [35].

4 Pulling the Threads Together

At this point the reader is probably struck by how similar the mathematics under-
lying all these approaches is. We’ve used essentially the same Lagrange multiplier
trick to enforce constraints three times; all of the methods in this review rely on
an eigendecomposition. Isomap, LLE, Laplacian eigenmaps, and spectral cluster-
ing all share the property that in their original forms, they do not provide a direct
functional form for the dimension-reducing mapping, so the extension to new data
requires re-training. Landmark Isomap solves this problem; the other algorithms
could also use Nyström to solve it (as pointed out by [5]). Isomap is often called
a ’global’ dimensionality reduction algorithm, because it attempts to preserve all
geodesic distances; by contrast, LLE, spectral clustering and Laplacian eigenmaps
are local (for example, LLE attempts to preserve local translations, rotations and
scalings of the data). Landmark Isomap is still global in this sense, but the land-
mark device brings the computational cost more in line with the other algorithms.
Although they start from quite different geometrical considerations, LLE, Lapla-
cian eigenmaps, spectral clustering and MDS all look quite similar under the hood:
the first three use the dual eigenvectors of a symmetric matrix as their low di-
mensional representation, and MDS uses the dual eigenvectors with components
scaled by square roots of eigenvalues. In light of this it’s perhaps not surprising
that relations linking these algorithms can be found: for example, given certain
assumptions on the smoothness of the eigenfunctions and on the distribution of the
data, the eigendecomposition performed by LLE can be shown to coincide with
the eigendecomposition of the squared Laplacian [4]; and Ham et al. [27] show
how Laplacian eigenmaps, LLE and Isomap can be viewed as variants of kernel
PCA. Platt [37] links several flavors of MDS by showing how landmark MDS and
two other MDS algorithms (not described here) are in fact all Nyström algorithms.
Despite the mathematical similarities of LLE, Isomap and Laplacian Eigenmaps,
their different geometrical roots result in different properties: for example, for data
which lies on a manifold of dimension d embedded in a higher dimensional space,
the eigenvalue spectrum of the LLE and Laplacian Eigenmaps algorithms do not
reveal anything about d, whereas the spectrum for Isomap (and MDS) does.
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The connection between MDS and PCA goes further than the form taken by the
’unexplained residuals’ in Eq. (30). If X ∈ Mmd is the matrix of m (zero-mean)
sample vectors, then PCA diagonalizes the covariance matrix X′X, whereas MDS
diagonalizes the kernel matrix XX′; but XX′ has the same eigenvalues as X′X
[29], and m− d additional zero eigenvalues (if m > d). In fact if v is an eigenvec-
tor of the kernel matrix so that XX′v = λv, then clearly X′X(X ′v) = λ(X ′v),
so X ′v is an eigenvector of the covariance matrix, and similarly if u is an eigen-
vector of the covariance matrix, then Xu is an eigenvector of the kernel matrix.
This provides one way to view how kernel PCA computes the eigenvectors of the
(possibly infinite dimensional) covariance matrix in feature space in terms of the
eigenvectors of the kernel matrix. There’s a useful lesson here: given a covariance
matrix (Gram matrix) for which you wish to compute those eigenvectors with non-
vanishing eigenvalues, and if the corresponding Gram matrix (covariance matrix)
is both available, and more easily eigendecomposed (has fewer elements), then
compute the eigenvectors for the latter, and map to the eigenvectors of the former
using the data matrix as above. Along these lines, Williams [52] has pointed out
that kernel PCA can itself be viewed as performing MDS in feature space. Before
kernel PCA is performed, the kernel is centered (i.e. PeKP e is computed), and
for kernels that depend on the data only through functions of squared distances be-
tween points (such as radial basis function kernels), this centering is equivalent to
centering a distance matrix in feature space. [52] further points out that for these
kernels, classical MDS in feature space is equivalent to a form of metric MDS in
input space. Although ostensibly kernel PCA gives a function that can be applied
to test points, while MDS does not, kernel PCA does so by using the Nyström
approximation (see Section 3.1.3), and exactly the same can be done with MDS.
The subject of feature extraction and dimensional reduction is vast. In this review
I’ve limited the discussion to mostly geometric methods, and even with that restric-
tion it’s far from complete, so I’d like to alert the reader to three other interesting
leads. The first is the method of principal curves, where the idea is to find that
smooth curve that passes through the data in such a way that the sum of short-
est distances from each point to the curve is minimized, thus providing a nonlinear,
one-dimensional summary of the data [28]; the idea has since been extended by ap-
plying various regularization schemes (including kernel-based), and to manifolds
of higher dimension [42]. Second, competitions have been held at recent NIPS
workshops on feature extraction, and the reader can find a wealth of information
there [26]. Finally, recent work on object detection has shown that boosting, where
each weak learner uses a single feature, can be a very effective method for finding
a small set of good (and mutually complementary) features from a large pool of
possible features [50].
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