Kernel PCA Pattern Reconstruction
via Approximate Pre-Images

Bernhard Scholkopf, Sebastian Mika,
Alex Smola, Gunnar Ratsch, & Klaus-Robert Miiller
GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany
{bs, mika, smola, raetsch, klaus}@first.gmd.de

Abstract

Algorithms based on Mercer kernels construct their solutions in terms
of expansions in a high-dimensional feature space F. Previous work has
shown that all algorithms which can be formulated in terms of dot prod-
ucts in F' can be performed using a kernel without explicitly working
in F. The list of such algorithms includes support vector machines and
nonlinear kernel principal component extraction. So far, however, it did
not include the reconstruction of patterns from their largest nonlinear
principal components, a technique which is common practice in linear
principal component analysis.

The present work proposes an idea for approximately performing this
task. As an illustrative example, an application to the de-noising of data
clusters is presented.

1 Kernels and Feature Spaces

A Mercer kernel is a function k(x,y) which for all data sets {xi,...,x;} C RY
gives rise to a positive (not necessarily definite) matrix K;; := k(x;,x;) [4]. One
can show that using k instead of a dot product in RN corresponds to mapping
the data into a possibly high-dimensional space F' by a (usually nonlinear) map
®, and taking the dot product there, i.e. k(x,y) = (®(x) - &(y)) [1]-

Support vector (SV) machines construct linear functions on F', correspond-
ing to nonlinear functions on RY [1]. Kernel principal component analysis
(kernel PCA) extracts linear principal components in F', corresponding to non-
linear feature extractors on RY [6]. Kernels that have proven useful in these
algorithms include Gaussian kernels

k(x,y) = exp (—lx - yl*/(2 0?)) , 1)

and polynomial kernels k(x,y) = (x -y)¢, which compute dot products in
feature spaces spanned by all possible products of input dimensions [1, 5].

In both cases, the corresponding ® is nonlinear, and the dimensionality of
the linear span of the ®-images of our data set {x,...,X,} can exceed the di-
mensionality of their span in input space, provided £ is sufficiently large. Thus,
we cannot expect that there exists a pre-image under @ for each vector ¥ € F'
that can be expressed as a linear combination of the vectors ®(x;),..., ®(xy),
i.e. a z such that ®(z) = ¥. Examples of the latter include, as we shall see

below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases
where the pre-image does exist, we can provide a means of constructing it: to
this end, suppose we have a vector in F' (e.g. a principal axis in kernel PCA,
or the normal vector of a hyperplane describing a SV classifier) given in terms
of an expansion of images of input data, with an unknown pre-image xo under

® in input space RY, i.e. ®(xq) = Cad(x; : hence, for any x € RY,
j=1 X2 \X;

¢
k(xo,x) = Zajk(xj,x). (2)

Assume moreover that the kernel k(x,y) is an invertible function f; of (x-y),
e.g. k(x,y) = (x-y)¢ with odd d, or k(x,y) = o((x - y) + ©) with a strictly
monotonic sigmoid function ¢ and a threshold ©. Given any a priori chosen

orthonormal basis of input space {e1,...,en}, we can use (2) to expand xg as
N N
Xog = Z(xo - ei)ei = ka_l(k(xo,ei))ei
i=1 i=1

N ¥4
SR aik(xge) | e (3)
i=1 j=1

Using the polarization identity, a similar expansion can be given for radial basis
function kernels k(x,y) = fi (||x — yl|?); for further details, cf. [5].

The assumption, however, that there exists a pre-image g, is a very strong
one. To see this, we take a look at one possible representation of F'. One can
show [5] that ® can be thought of as a map ®(x) = k(x,.) into a Hilbert space
Hp, of functions), a;k(x;,.) with a dot product satisfying (k(x,.),k(y,.)) =
k(x,y). By virtue of this property, Hy is called a reproducing kernel Hilbert
space (e.g. [4]). For instance, for the Gaussian kernel (1), Hy, thus contains all
linear superpositions of Gaussian bumps on RN (plus limit points), whereas by
definition of @ only single bumps k(x,.) do have pre-images under ®.

The remainder of the paper is organized as follows. We briefly review the
kernel PCA algorithm, describe the problem of reconstructing patterns from
nonlinear principal components, along with an algorithm to solve it. To il-
lustrate the feasibility, we then consider an example of de-noising Gaussian
clusters, and conclude with a discussion.

2 Kernel PCA and Reconstruction

Principal Component Analysis (PCA) (e.g. [3]) is a basis transformation to
diagonalize an estimate of the covariance matrix of the data xz, &k = 1,...,7,
x; € RY, Zizl xy = 0, defined as C = %Zﬁzl x;x; . The new coordinates
in the Eigenvector basis, i.e. the orthogonal projections onto the Eigenvec-
tors, are called principal components. To generalize this setting to a nonlin-
ear one [6], assume for the moment that our data mapped into feature space,

¢
®(x1),...,®(xy), are centered, i.e. Y ®(x;) =0.! To do PCA for the covari-
k=1
ance matrix

0 =73 8(x)(xy)T, ()

we have to find Eigenvalues A > 0 and Eigenvectors V € F\{0} satisfying
AV = CV. Substituting (4), we note that all solutions V with A\ # 0 lie in

the span of ®(x;),...,®(x¢). This implies that we may consider the equivalent
system
M®(xz) - V) = (®(xx)-CV) forall k=1,...,4, (5)
and that there exist coefficients aq, ..., ay such that
¢
V=> a;®(x:). (6)
i=1

Substituting (4) and (6) into (5), and defining an ¢ x £ matrix K by K;; :=
(®(x;) - ®(x;4)) = (k(xi,x%;)), we arrive at a problem which is cast in terms of
dot products: solve

ha=Ka (7)

for nonzero Eigenvalues A, and coefficient Eigenvectors a = (a,...,ap) . We
normalize the solutions a* by requiring that the corresponding vectors in F
be normalized, i.e. (V¥.V*) =1, which translates into Az (a* - a*) = 1. For
principal component extraction, we compute projections of the image of a test
point ®(x) onto the Eigenvectors V¥ in F according to

4 4
B := (V¥ 8(x)) = Z o (®(x;) - B(x)) = Z afk(x;,X). (8)

Note that for feature extraction, we thus have to evaluate £ kernel functions
in input space rather than a dot product in a very high—-dimensional space.
Moreover, kernel PCA can be carried out for all kernels described in Sec. 1, no
matter whether we know the corresponding map ® or not. The nonlinearity is
taken into account implicitly when computing the matrix elements of K and
when computing the projections (8), the remainder of the algorithm is simple
linear algebra.

Since kernel PCA is nothing but a PCA in F, i.e. an orthogonal basis
transform in F', ®(x) can always be reconstructed from its principal components
(e.g- [3]). To state this formally, we define a projection operator P, (assuming
the Eigenvectors are sorted such that the Eigenvalue size decreases with k) by

n
k
Pd(x) =Y BVE 9)
k=1
1Otherwise, we have to go through the same algebra using i(xi) = P(x;) —

(1/8) ijl ®(x;) (for details, see [6]).

Kernel PCA has the property that (i) if n is sufficiently large to take into ac-
count all principal components belonging to Eigenvectors with nonzero Eigen-
values, we have P, ®(x;) = ®(x;), and (ii) if we truncate the expansion for
smaller n, the overall squared error Zle || P, ®(x;) — ®(x;)||? is minimal among
all those obtainable by projecting onto n directions. Typically, however, we are
interested in approximate representations of the data in input space rather than
in F. To this end, we are looking for a z € RY such that

p(z) = ||, 2 (x) - &(2)|* (10)
is minimized. Before discussing how to do this, we state two applications:

De-noising. Given x, we map it into ®(x), discard higher components to
obtain P,®(x), and then compute z. Here, the hope is that the main
structure in the data set is captured in the first n directions, and the
remaining components mainly pick up the noise — in this sense, z can be
thought of as a de-noised version of x.

Compression. Given 3 and V¥, k = 1,...,n, but not x, compute z as an
approximate reconstruction for x. This is useful if n is smaller than the
dimensionality of the input data.

If P,®(x) # ®(x), we cannot guarantee the existence of an exact pre-image
(and indeed, in the de-noising case, we do not even want an exact pre-image),
i.e. the minimal p might be nonzero. Therefore, we opted for an approach
different from the one described in Sec. 1, and simply used gradient methods
to minimize (10) over z (cf. [2, 6]). Substituting (6) and (9) into (10), we can
express p (and thus %) in terms of the kernel k: collecting terms independent

of z in C, the objective function p(z) takes the form

n 4
p(z) = k(z,2) =2 B Y afk(xi,z) + C. (11)
k=1 i=1

3 Experiments

In the present work, we focus on the application to de-noising, which differs from
compression by the fact that we are allowed to make use of the original data. We
took advantage of this in the minimization of (10), by using conjugate gradient
descent with the respective example x as a starting point. All experiments
reported were carried out with Gaussian kernels (1), however, similar results
were obtained with polynomial kernels. We generated an artificial data set
from three point sources at (-0.5,-0.1), (0,0.7), (0.5,0.1) (100 points each) with
Gaussian noise (o = 0.1), and performed kernel PCA on it (Fig. 1).

Using the resulting Eigenvectors, we extracted nonlinear principal compo-
nents from a set of test points generated from the same model, and recon-
structed the points from varying numbers of principal components. Figure 2
shows that discarding higher-order components leads to removal of the noise
— the points move towards their respective sources.

* ol
& * e
N N R
* A = 7 = 7
N R S NS oo
= A 5 A 7
. '/J

Figure 1: Kernel PCA toy
example (see text): lines of
constant feature value for

the first 8 nonlinear principal
components extracted with
k(x,y) = exp (=[x — y[[*/0.1).
The first 2 principal component
(top middle/right) separate the
three clusters. Components
3-5 split the clusters. Com-
ponents 6-8 split them again,
orthogonal to the above splits.

Figure 2: Kernel PCA de-
noising by reconstruction from
projections onto the Eigenvec-
tors of Fig. 1. We generated
20 new points from each Gaus-
sian, represented them in fea-
ture space by their first n =
1,2,...,8 mnonlinear principal
components, and computed ap-
proximate pre-images, shown in
the upper 9 pictures (top left:
original data, top middle: n =
1, top right: n = 2, etc.). Note
that by discarding higher order
principal components (i.e. using
a small n), we remove the noise
inherent in the nonzero variance
o2 of the Gaussians. The lower
9 pictures show how the orig-
inal points “move” in the de-
noising. Unlike the correspond-
ing case in linear PCA, where
where we obtain lines (see Fig-
ure 3), in kernel PCA clusters
shrink to points.

Figure 3: Reconstructions and
point movements for linear
PCA, based on the first princi-
pal component.

4 Discussion

We have studied the problem of finding pre-image of vectors in feature spaces,
and shown how it is related to the problem of reconstructing data from its
nonlinear principal components as extracted by the kernel PCA algorithm. We
have proposed an algorithm to perform the reconstruction, and presented a
toy example in order to illustrate that the basic idea is sound. A thorough
experimental evaluation on real-world data is currently being carried out.
Clearly, there are other possibilities for constructing the mapping from the
nonlinear feature representation back to the data. For instance, we could have
trained a network to approximate this mapping, which would yield an overall
architecture similar to a bottleneck network with (8) serving as the mapping
into the bottleneck. Alternatively, we could have thrown all theoretical worries
overboard, pretending that exact pre-images did exist, and hoping that (3)
would give us a sensible approximation even though the former is not the case.
Open questions and problems include the choice of a suitable kernel for a
given noise reduction problem, possibly in conjunction with the regularization
properties of the kernel, faster reconstruction algorithms, the application of the
approach to compression, and the study of the optimal cut-off, i.e. the unsolved
problem of where the structure ends, and where the noise begins (see e.g. [3]).

Acknowledgments. BS and AS were supported by a grant from the Aus-
tralian Research Council, and carried out part of the work at the Australian
National University, Canberra. AS was supported by the DFG (# Ja 379/71).

References

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for
optimal margin classifiers. In D. Haussler, editor, Proceedings of the 5th

Annual ACM Workshop on Computational Learning Theory, pages 144—
152, Pittsburgh, PA, July 1992. ACM Press.

[2] C. J. C. Burges. Simplified support vector decision rules. In L. Saitta,
editor, Proceedings, 13th Intl. Conf. on Machine Learning, pages 71-77,
San Mateo, CA, 1996. Morgan Kaufmann.

[3] K. I Diamantaras and S. Y. Kung. Principal Component Neural Networks.
Wiley, New York, 1996.

[4] S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman
Scientific & Technical, Harlow, England, 1988.

[5] B. Scholkopf. Support Vector Learning. Oldenbourg Verlag, Munich, 1997.

[6] B. Scholkopf, A. Smola, and K.-R. Miiller. Nonlinear component analysis
as a kernel eigenvalue problem. Neural Computation, 10:1299 — 1319, 1998.

