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1 Principal Components Analysis

Principal components analysis (PCA) is a very popular technique for dimensionality reduc-

tion. Given a set of data on n dimensions, PCA aims to find a linear subspace of dimension

d lower than n such that the data points lie mainly on this linear subspace (See Figure 1 as

an example of a two-dimensional projection found by PCA). In practice we are not able to

find a reduced subspace where all of the points lie exactly in that subspace. Instead we try

to find a subspace which attempts to maintain most of the variability of the data.
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Figure 1: PCA applied to the same data set. A two-dimensional projection is shown, with a

sample of the original input images.
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The linear subspace can be specified by d orthogonal vectors, call them: U1, U2, . . . , Ud

that form a new coordinate system, called the ‘principal components’. The principal com-

ponents are orthogonal, linear transformations of the original data points, so there can be

no more than n of them. However, the hope is that only d < n principal components are

needed to approximate the space spanned by the n original axes. In the case where d = n

the number of dimensions remains the same and there is no reduction.

Example 1: The following is a reduction from a two dimensional space into a one

dimensional space. We can see the principal components U1 and U2 in the diagram. U1

corresponds to the direction in which the data has the most variance while U2 is orthogonal

to it. If we ignore the U2 direction and project the points in the U1 dimension we reduced

the dimensionality of the data.

Figure 2: PCA applied to a 2D data set to reduce it to a single dimension.
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Example 2: In this example we can reduce a set of 3D data to a set in only two

dimensions. We do this by forming a plane from the first two principal components U1 and

U2. We then project all of the points on to that plane. The points are shown in their reduced

dimension in the figure on the right.

Figure 3: PCA applied to a 3D data set to reduce it to two dimensions.

The most common definition of PCA, due to Hotelling [1], is that, for a given set of data

vectors xi, i ∈ 1...t, the d principal axes are those orthonormal axes onto which the variance

retained under projection is maximal.

In order to capture as much of the variability as possible, let us choose the first principal

component, denoted by U1, to have maximum variance. Suppose that all centered observa-

tions are stacked into the columns of an n× t matrix X, where each column corresponds to
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an n-dimensional observation and there are t observations. Let the first principal component

be a linear combination of X defined by coefficients (or weights) w = [w1....wn].

U1 = w
(1)
1 x1 + w

(1)
2 x2 + · · ·+ w(1)

n xn

In matrix form:

U1 = wT X

We want this first dimension to have maximum variance.

var(U1) = var(wT X) = wT Sw

where S is the n× n sample covariance matrix of X.

Clearly var(U1) can be made arbitrarily large by increasing the magnitude of w. This

means that the variance stated above has no upper limit and so we can not find the maximum.

To solve this problem, we choose w to maximize wT Sw while constraining w to have unit

length. Therefore, we can rewrite the above equation as:

max wT Sw

subject to wT w = 1

To solve this optimization problem a Lagrange multiplier α1 is introduced:

L(w, α) = wT Sw − α1(w
T w − 1) (1)

Differentiating with respect to w gives n equations,

Sw = α1w
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Premultiplying both sides by wT we have:

wT Sw = α1w
T w = α1

var(U1) is maximized if α1 is the largest eigenvalue of S.

Clearly α1 and w are an eigenvalue and an eigenvector of S. Differentiating (1) with

respect to the Lagrange multiplier α1 gives us back the constraint:

wT w = 1

This shows that the first principal component is given by the normalized eigenvector with

the largest associated eigenvalue of the sample covariance matrix S. A similar argument can

show that the d dominant eigenvectors of covariance matrix S determine the first d principal

components.
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Algorithm 1

Recover basis: Calculate XX> =
∑t

i=1 xix
>
i and let U = eigenvectors of XX> corre-

sponding to the top d eigenvalues.

Encode training data: Y = U>X where Y is a d × t matrix of encodings of the

original data.

Reconstruct training data: X̂ = UY = UU>X.

Encode test example: y = U>x where y is a d-dimensional encoding of x.

Reconstruct test example: x̂ = Uy = UU>x.

Table 1: Direct PCA Algorithm
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