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1 Using Partial Distance Side Information

We will now discuss the use of the second kind of side information mentioned at the beginning

of this chapter. Recall that in this case, we assume that we have prior side information that

gives exact distances between some pairs of points in some space natural to the data. This

type of side information was motivated by cases where no class structure is available, but

some prior distance information can be obtained.

In cases like this, partial distance information can be used to inform our learned metric.

Given a set of similarities in the form of pairs for which distances are known

S : (xi, xj) ∈ S if the target distance dijis known

the following cost function is employed, which attempts to preserve the set of known distances

L(A) =
∑

(xi,xj)∈S

∥∥‖xi − xj‖2
A − dij

∥∥2
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The optimization problem is then

min
A

L(A)

s.t. A º 0

A convenient form for this optimization problem is obtained using the same approach for

quadratic terms used earlier.

L(A) =
∑

(xi,xj)∈S

∥∥‖xi − xj‖2
A − dij

∥∥2

=
∑

(xi,xj)∈S

∥∥vec(A)T vec((xi − xj)(xi − xj)
T )− dij

∥∥2

=
∑

(xi,xj)∈S

∥∥vec(A)T vec(Bij)− dij

∥∥2

=
∑

(xi,xj)∈S
vec(A)T vec(Bij)vec(Bij)

T vec(A) + d2
ij − 2dijvec(A)T vec(Bij)

where Bij = (xi − xj)(xi − xj)
T . Note that the d2

ij term in the above is a constant so it can

be dropped for the purposes of minimization, and rewrite the loss as

L(A) = vec(A)T


 ∑

(xi,xj)∈S
vec(Bij)vec(Bij)

T vec(A)− 2
∑

(xi,xj)∈S
dijvec(Bij)




= vec(A)T [Qvec(A)− 2R]

where Q =
∑

(xi,xj)∈S vec(Bij)vec(Bij)
T and R =

∑
(xi,xj)∈S dijvec(Bij). This objective is

still quadratic but a linear objective can be obtained via the Schur complement [1]. We will

briefly outline this approach.

The Schur complement relates the positive semidefiniteness of the matrix on the left and

the expression on the right by an if-and-only-if relation
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


X Y

Y T Z


 º 0 ⇔ Z − Y T X−1Y º 0

By decomposing Q = ST S, a matrix can be constructed of the form

J =




I Svec(A)

(Svec(A))T 2vec(A)T R + t




and by the Schur complement, if J º 0, then the following relation holds

2vec(A)T R + t− vec(A)T ST Svec(A) ≥ 0

Note that the left-hand side of this relation is scalar. So, as long as J is positive semidefinite,

the scalar t is an upper bound on the loss

vec(A)T ST Svec(A)− 2vec(A)T R = vec(A)T Qvec(A)− 2vec(A)T R

≤ t

Therefore, minimizing t subject to J º 0 also minimizes the objective. This produces the fi-

nal optimization problem, which can be readily solved by standard semidefinite programming

software

min
A

t

s.t. A º 0

J º 0
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2 Kernelizing Metric Learning

Not uncommonly, one needs to consider nonlinear transformations of data in order to apply

learning algorithms. One efficient method for doing this is via a kernel that computes a

similarity measure between any two data points. In this section, we show how a distance

metric can be learned in the feature space implied by a kernel, allowing our use of side

information to be extended to nonlinear mappings of the data.

Conceptually, the points are being mapped into a feature space by some nonlinear map-

ping Φ() and then a distance metric is learned in that space. Actually performing the

mapping is typically undesirable (the feature vectors may have infinite dimension, for exam-

ple), so we employ the well known kernel trick, using some kernel K(xi, xj) that computes

inner products between feature vectors without explicitly constructing them.

The squared distances in our objective have the form

(xi − xj)
T A(xi − xj)

Because A is positive semidefinite, it can be decomposed into A = WW T . This W matrix

can then be reexpressed as a linear combination of the data points, W = Xβ, via the kernel

trick. Rewriting the squared distance

(xi − xj)
T A(xi − xj) = (xi − xj)

T WW T (xi − xj)

= (xi − xj)
T XββT XT (xi − xj)

= (xT
i X − xT

j X)ββT (XT xi −XT xj)

= (XT xi −XT xj)
TA(XT xi −XT xj)
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where A = ββT , we have now expressed the distance in terms of the matrix to be learned,

A, and inner products between data points, which can be computed via the kernel, K. The

optimization of A then proceeds just as in the non-kernelized version presented earlier, with

one additional constraint. The rank of A must be t because β is t by n and A =ββT .

However, this constraint is problematic, and so we drop it during the optimization and then

find a rank t approximation of A using singular value decomposition.
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