
Lecture 18 Oct. 30 -2006

Data Visualization

STAT 442 / 890, CM 462

Lecture: Ali Ghodsi

1 Action Respecting Embedding

Action respecting embedding [1]takes a sequence of high-dimensional data x1, . . . , xt, along

with associated discrete actions a1, . . . , at−1. The data are assumed to be in some order,

where action ai was taken between data points xi and xi+1. The final piece of input is a

similarity function, ||xi−xj||, defining a distance over the high-dimensional data points. For

vector data, Euclidean distance is often sufficient, but other data-specific similarities can be

employed.

The overall structure of the algorithm follows the same three steps of SDE :

(i) Construct a neighbourhood graph.

(ii) Solve a semidefinite program to find the maximum variance embedding subject to con-

straints.

(iii) Extract a low-dimensional embedding from the dominant eigenvectors of the learned

kernel matrix.

ARE, though, seeks to exploit the additional information provided by the action labels

1

of the data. This information is mainly exploited by adding action-respecting constraints

into the semidefinite program.

1.1 Action Respecting Constraints

The most important, contribution of ARE is the addition of action respecting constraints.

The evaluation of learned manifolds is often subjective and usually amounts to demonstrat-

ing that the manifold corresponds to the known data generator’s own underlying degrees

of freedom. Action labels, even with no interpretation or implied meaning, provide more

information about the underlying generation of the data. It is natural to expect that the

actions correspond to some simple operator on the generator’s own degrees of freedom. For

example, a camera that is being panned left and then right, has actions that correspond

to a simple translation in the camera’s actuator space. We therefore want to constrain the

learned representation so that the labeled actions correspond to simple transformations in

that space. In particular, we can require all actions to be a simple rotation plus translation

in the resulting low-dimensional representation.1

We can formalize this constraint by first observing rotation plus translation is exactly

the space of distance preserving transformations. A transformation T is distance preserving

and thus a rotation plus translation if and only if:

∀x, x′ ||T (x)− T (x′)|| = ||x− x′||.

Let us consider this in the context of an action-labeled data sequence. All actions must

1These are the subset of linear transformations that don’t involve any scaling component.

2

be distance preserving transformations in the learned representation. Therefore, for any

two data points, xi and xj, the same action taken at those data points must preserve their

distance. Letting Φ(xi) denote data point xi in the learned space, We require that action

a’s transformation, Ta, must satisfy:

∀i, j ||Ta(Φ(xi))− Ta(Φ(xj))|| =

||Φ(xi)− Φ(xj)||. (1)

Now, if we let a = ai and consider the case where aj = ai. Then, Ta(Φ(xi)) = Φ(xi+1) and

Ta(Φ(xj)) = Φ(xj+1), and Constraint (1) becomes:

||Φ(xi+1)− Φ(xj+1)|| = ||Φ(xi)− Φ(xj)||. (2)

We want to pose this not as a constraint on distances, but rather as a constraint on inner

products, i.e., on the learned kernel matrix, K. We can square both sides of the equation

and rewrite it in terms of K resulting in the following set of constraints:

∀i, j ai = aj ⇒

K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =

Kii − 2Kij + Kjj (3)

We can add Constraint (3) into SDE’s usual constraints to arrive at the optimization

and algorithm shown in Table 1. There is a slight modification to SDE’s usual neighbour

constraint, changing strict equality into an upper bound. This modification insures that the

constraints are feasible by allowing the zero matrix to be a feasible solution. Notice that

3

the additional action respecting constraints are still linear in the optimization variables,

Kij, and so the optimization remains a semidefinite program. Since the neighbourhood

graph ηij is fully connected, the optimization is bounded, convex, and feasible, and therefore

can be solved efficiently with various general-purpose toolboxes. The results in this paper

were obtained using SeDuMi [2] in MATLAB. These results also used highly penalized slack

variables in SDE’s neighbourhood constraint to help improve the stability of the solution.

This was recommended by Weinberger and colleagues in their original SDE work [3].

Algorithm: ARE

Construct neighbours, η, according to Equation (??).

Maximize Tr(K) subject to K º 0:
∑

ij Kij = 0,

∀ij ηij > 0 ∨ [ηT η]ij > 0 ⇒

Kii − 2Kij + Kjj ≤ ||xi − xj||2 , and

∀ij ai = aj ⇒

K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =

Kii − 2Kij + Kjj

Run Kernel PCA with learned kernel, K.

Table 1: ARE Algorithm.

4

References

[1] M. Bowling, A. Ghodsi, and D. Wilkinson. Action respecting embedding. In International

Conference on Machine Learning, 2005.

[2] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric

cones. Optim. Methods Softw., 11/12(1-4):625–653, 1999.

[3] K. Weinberger and L. Saul. Unsupervised learning of image manifolds by semidefinite

programing. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 988–995, 2004.

5

