### 1990

T.H.C. Smith, T.W.S. Meyer, "Lower bounds for the symmetric travelling
salesman problem from lagrangean relaxations", *Discrete Applied Mathematics
***26,**
209-217.

T. Volgenant and R. Jonker, "Fictitious upper bounds in an algorithm for
the symmetric traveling salesman problem", *Computers and Operations
Research ***17, **113-117.

M. Padberg and G. Rinaldi, "An efficient algorithm for the minimum capacity
cut problem", *Mathematical Programming* **47,** 19-36.

M. Padberg and G. Rinaldi, "Facet identification for the symmetric traveling
salesman polytope", *Mathematical Programming* **47, **219-257.

### 1991

M. Grötschel and O. Holland, "Solution of large-scale symmetric travelling
salesman problems", *Mathematical Programming* **51,** 141-202.

M. Padberg and G. Rinaldi, "A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems", *SIAM Review ***33,
**60-100.

### 1992

S. Tschöke, M. Räcke, R. Lüling, and B. Monien, "Solving
the traveling salesman problem with a parallel branch-and-bound algorithm
on a 1024 processor network", *Technical Report*, Department of Mathematics
and Computer Science, University of Paderborn, Germany, 1992.

### 1993

J.-M. Clochard and D. Naddef, "Using path inequalities in a branch and
cut code for the symmetric traveling salesman problem", in *Third IPCO
Conference*, (G. Rinaldi and L. Wolsey, eds), pp. 291-311.

### 1994

M. Jünger, S. Thienel, and G. Reinelt, "Provably good solutions for
the traveling salesman problem", *Zeitschrift für Operations Research
***40,
**183-217.

### 1995

D. Applegate, R. Bixby, V. Chvátal, and W. Cook, "Finding cuts in
the TSP (A preliminary report)", *DIMACS Technical Report* 95-05,
March.
A detailed description of several separation
algorithms for combs and clique trees. These algorithms were used by the
authors to solve a series of TSPLIB test instances, including pcb3038,
fnl4461, and pla7392. Certificates of the optimality of these three large
instances were made available on the internet by the authors.

T. Christof and G. Reinelt, "Parallel cutting plane generation for the
TSP - Extended Abstract", *Research Report*, Interdisziplinäres
Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg.

M. Jünger, G. Reinelt, and G. Rinaldi, "The traveling salemsan problem",
in: *Handbooks in Operations Reseach and Management Science, Volume 7*
(M.O. Ball, T. Magnanti, C.L. Monma, and G. Nemhauser, eds), Elsevier Science
B.V., pp. 225-330.

M. Jünger and P. Stömer, "Solving large-scale traveling salesman
problems with parallel branch-and-cut", *Report* Number 95.191, Institut
für Informatik, Universität Köln.

S. Tschöke, R. Lüling, and B. Monien, "Solving the traveling
salesman problem with a parallel branch-and-bound algorithm on a 1024 processor
network", *Technical Report Number *160, Department of Mathematics
and Computer Science, University of Paderborn, Germany.